Large-Scale Structure with the Dark Energy Spectroscopic Instrument (DESI)

Kyle Dawson, University of Utah On behalf of the DESI Collaboration

14th Conference on the Intersections of Particle and Nuclear Physics

Cosmic Discovery Space

DARK ENERGY SPECTROSCOPIC Cosmology with Surveys: A Staged Approach

	Imaging	Spectroscopy	Cosmic Microwave Background		
Stage-III	Dark Energy Survey	BOSS/eBOSS	SPT/BICEP/Simons		
	(2013-2019)	(2009-2019)	(~2017 –)		
Stage-IV	Rubin/LSST	DESI	CMB-S4		
	(~2024 –)	(2021 –)	(~2030 –)		

DARK ENERGY SPECTROSCOPIC INSTRUMENT

- Evolving distribution of matter in Universe
 - Cosmic expansion and growth of structure
- Derived Measurements: H(z), $D_M(z)$, $f\sigma_8(z)$
 - Physics of dark energy
 - Composition of the Universe
 - Neutrino mass, Inflation, Laws of gravity

DARK ENERGY SPECTROSCOPIC Expansion with Baryon Acoustic Oscillations

U.S. Department of Energy Office of Science

• Friedmann Equation (includes all energy components):

$$H^{2}(a) = \frac{8\pi G}{3}\rho(a) - \frac{kc^{2}}{a^{2}}$$

- Baryon Acoustic Oscillations (BAO)
 - Measure angular diameter distance and H(z)
 - Provide relative distance estimates at many redshifts
 - Constrain energy density as function of redshift

DARK ENERGY SPECTROSCOPIC INSTRUMENT Growth History with Redshift Space Distortions

U.S. Department of Energy Office of Science

• Linear growth equation:

$$\delta(\mathbf{x},t) = D(t)\delta(\mathbf{x},t_0)$$
$$\ddot{D} + 2H(z)\dot{D} - \frac{3}{2}\Omega_m H_0^2 (1+z)^3 D = 0$$
$$f(z) \equiv \frac{d\ln D}{d\ln a} \qquad \qquad f = \frac{\partial\ln\sigma_8}{\partial\ln a}$$

• Linear Growth Rate:

• Redshift Space Distortions (RSD) measure f sigma8

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Direct tracers Galaxies and quasars (z<2.1) Absorption in quasar spectra by foreground Lyman-alpha forest (z>2.1)

7

DARK ENERGY Stage-III Dark Energy Surveys: BAO + RSD SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

SDSS BAO Distance Ladder

DARK ENERGY SPECTROSCOPIC INSTRUMENT Stage-III Cosmological Model (eBOSS et al. 2021)

- ~I% precision estimates on the dark energy density, H₀, and amplitude of matter fluctuation regardless of cosmological model
- $w_{n}(z=0.36) = -1.013 + -0.029$ in w0waCDM, little degradation with w_{a}
- 40X decrease in curvature/H0/sigma8/w0/neutrino mass posterior volume relative to Stage-II
- Planck+Pantheon+DES: additional 25X improvement \rightarrow average 4X per parameter

	Ω_{Λ}	H_0	σ_8	Ω_K	w_0	w_a	$\Sigma m_{\nu} [eV]$
ACDM	0.6959 ± 0.0047	68.19 ± 0.36	0.8073 ± 0.0056	—		-	—
oΛCDM	0.6958 ± 0.0048	68.21 ± 0.55	0.8076 ± 0.0065	0.0001 ± 0.0017		-	(1 -1)
wCDM	0.6992 ± 0.0066	68.64 ± 0.73	0.8128 ± 0.0092		-1.020 ± 0.027	-	20 - 02
owCDM	0.6997 ± 0.0069	68.59 ± 0.73	0.8127 ± 0.0091	-0.0004 ± 0.0019	-1.023 ± 0.030	—	8 - 2
$w_0 w_a \text{CDM}$	0.6971 ± 0.0069	68.47 ± 0.74	0.8139 ± 0.0093	-	-0.939 ± 0.073	$-0.31^{+0.28}_{-0.24}$	
$ow_0 w_a CDM$	0.6988 ± 0.0072	68.20 ± 0.81	0.8140 ± 0.0093	-0.0023 ± 0.0022	-0.912 ± 0.081	$-0.48^{+0.36}_{-0.30}$	
$m_{\nu}\Lambda \text{CDM}$	0.6975 ± 0.0053	68.34 ± 0.43	$0.8115^{+0.0092}_{-0.0068}$			-	< 0.111(95%)
m_{ν} wCDM	0.6993 ± 0.0067	68.65 ± 0.73	$0.813^{+0.011}_{-0.0098}$	1	$-1.019^{+0.034}_{-0.029}$	-	< 0.161(95%)

DARK ENERGY SPECTROSCOPIC INSTRUMENT Stage-III Cosmological Model (eBOSS et al. 2021)

- ~I% precision estimates on the dark energy density, H₀, and amplitude of matter fluctuation regardless of cosmological model
- $w_{n}(z=0.36) = -1.013 + -0.029$ in w0waCDM, little degradation with w_{a}
- 40X decrease in curvature/H0/sigma8/w0/neutrino mass posterior volume relative to Stage-II
- Planck+Pantheon+DES: additional 25X improvement \rightarrow average 4X per parameter

	Ω_{Λ}	H_0	σ_8	Ω_K	w_0	w_a	$\sum m_{\nu} [eV]$
ACDM	0.6959 ± 0.0047	68.19 ± 0.36	0.8073 ± 0.0056	—	—	-	-
oΛCDM	0.6958 ± 0.0048	68.21 ± 0.55	0.8076 ± 0.0065	0.0001 ± 0.0017			()—()
wCDM	0.6992 ± 0.0066	68.64 ± 0.73	0.8128 ± 0.0092		-1.020 ± 0.027	-	20-02
owCDM	0.6997 ± 0.0069	68.59 ± 0.73	0.8127 ± 0.0091	-0.0004 ± 0.0019	$ -1.023 \pm 0.030$	—	e 11
$w_0 w_a \operatorname{CDM}$	0.6971 ± 0.0069	68.47 ± 0.74	0.8139 ± 0.0093	-	$ -0.939 \pm 0.073$	$-0.31^{+0.28}_{-0.24}$	_
$ow_0 w_a CDM$	0.6988 ± 0.0072	68.20 ± 0.81	0.8140 ± 0.0093	-0.0023 ± 0.0022	-0.912 ± 0.081	$-0.48^{+0.36}_{-0.30}$	
$m_{\nu}\Lambda \text{CDM}$	0.6975 ± 0.0053	68.34 ± 0.43	$0.8115^{+0.0092}_{-0.0068}$	-		- (< 0.111(95%)
m_{ν} wCDM	0.6993 ± 0.0067	68.65 ± 0.73	$0.813^{+0.011}_{-0.0098}$	-	$-1.019^{+0.034}_{-0.029}$		< 0.161(95%)

DARK ENERGY SPECTROSCOPIC New Physics in Expansion History?

U.S. Department of Energy Office of Science

- **BAO** \rightarrow insensitive to the strict cosmological priors in CMB-only estimates.
- $BAO \rightarrow$ insensitive to CMB anisotropies if using LCDM and BBN

1

1

GY Tension in Growth of Structure?

- BAO + RSD \rightarrow 3.5% precision on growth of structure
- CMB and DES: sigma8 tension, Omega_m tension, or no tension?

Dark ENERGY SPECTROSCOPIC INSTRUMENT Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

• Located at 4-meter Mayall Telescope in Arizona

- Upgraded telescope for wide field spectroscopy
- Now dedicated to multi-object spectroscopy

• First Stage-IV Dark Energy Experiment

- Optimized for BAO measurements
- IOX improvement to w0wa posterior area compared to Stage-II Type la supernovae measurements
- Comprehensive cosmology program
 - Redshift Space Distortions
 - Cross-correlations with other surveys
 - More cosmology, galaxy evolution, and astrophysics

DARK ENERGY SPECTROSCOPIC Uninterrupted Galaxy and Quasars from 0<z<3.5

U.S. Department of Energy Office of Science

Plus 10 million Milky Way stars

SPECTROSCOPIC First Year Sample

U.S. Department of Energy Office of Science

- 6.3M Bright Galaxies (z < 0.5)
- 2.6M stars
- 2.7M LRGs (0.4<*z*<1.1)
- 4.1M Emission line galaxies (0.6<z<1.6)
- 1.7M QSOs (0.9<*z*<2.1 tracers & *z*>2.1 with Lyα forest)

First results on arxiv (8 papers): Validation of Spectroscopic Samples

DARK ENERGY SPECTROSCOPIC INSTRUMENT First Year Map

DARK ENERGY SPECTROSCOPIC INSTRUMENT Primary Science Driver: Dark Energy with BAO

- Stage-III BAO distance measurements:
 - \circ 0.70% precision at z < 1
 - 1.19% precision at z > 1
- DESI BAO distance science requirement:
 - 0.28% precision at z<1.1
 - 0.39% precision at 1.1<z<1.9
 - o <1% precision at z>1.9
- Expect to exceed requirements by ~1.4X in final measurements

DARK ENERGY SPECTROSCOPIC Early BAO results: Correlation function monopole

U.S. Department of Energy Office of Science

BOSS+eBOSS vs. 2 months of DESI

SPECTROSCOPIC Beyond BAO: Redshift Space Distortions

- Stage-III Spectroscopy
 - \circ 4.78% precision over the redshift interval 0 < z < 1.5
 - 3.5% precision on sigma8, no tension with Planck
- DESI: 21 independent measurements to z<2.1 with median 5.2% precision

SPECTROSCOPIC Beyond BAO: Redshift Space Distortions

U.S. Department of Energy Office of Science

• Stage-III Spectroscopy

- \circ 4.78% precision over the redshift interval 0 < z < 1.5
- 3.5% precision on sigma8, no tension with Planck
- DESI: 21 independent measurements to z<2.1 with median 5.2% precision

SPECTROSCOPIC Beyond BAO: Redshift Space Distortions

U.S. Department of Energy Office of Science

- Stage-III Spectroscopy
 - \circ 4.78% precision over the redshift interval 0 < z < 1.5
 - 3.5% precision on sigma8, no tension with Planck
- DESI: 21 independent measurements to z<2.1 with median 5.2% precision

22

SPECTROSCOPIC Beyond RSD: Growth of Structure

- Year 1 strategy
 - Collaboration-wide demonstration of primary BAO+RSD measurements
 - Measurements of primordial non-Gaussianity in power spectrum
- Year 3 strategy (in discussion now)
 - Collaboration-wide effort to enhance growth measurements over all redshifts (explore growth of structure tension)
 - Introduce higher order statistics into cosmology results

SPECTROSCOPIC Beyond RSD: Growth of Structure

U.S. Department of Energy Office of Science

• Potential Year 3 Key Projects

- z<0.1 peculiar velocities with Tully Fisher + Fundamental plane + SNe Ia
- 0.1<z<1.6 bispectrum (fnl and ~30% improvement on RSD)
- galaxy-galaxy lensing to constrain RSD nuisance terms
- CMB-DESI cross-correlations to directly measure sigma8(z)
- 1D power spectrum in Lyman-alpha forest for sigma8(z>2)
- Expect sub-percent precision on sigma8 with final RSD analysis
- What improvement on sigma8 is possible relative to RSD only?

SPECTROSCOPIC Beyond DESI: High Density Galaxy Clustering

- 0<z<1.5: covers matter-dominated to dark energy dominated regimes
 - Redshift range where most Dark Energy models are best explored
 - Limited by theory and computing
- nP=1 approximates optimal balance of number density at a fixed scale
 10,000 galaxies/sqdeg → kmax=1 h/Mpc for z<1.5
- 180M galaxies over Rubin footprint "saturates" cosmological information

SPECTROSCOPIC Beyond DESI: High Redshift Galaxy Clustering

- z>2: matter-dominated regime with massive volume
 - Experimentally limited with current facilities
 - Spectroscopy of 10's of millions of galaxies over the Rubin footprint would provide high precision BAO, RSD, neutrino mass, and inflationary constraints
- Targets for spectroscopy
 - Plentiful (and faint) Lyman-break and Lyman-alpha emission galaxies
 - Spectroscopy challenging

SPECTROSCOPIC Beyond DESI: Stage-V Roadmap

- DESI will remain premier spectroscopic facility in late 2020's
 - z<1 galaxies easily measured to zfib<21.6
 - z>2 Lyman Break galaxies: ~300/sqdeg
 - z>2 Lyman-alpha emission galaxies: >1000/sqdeg w/new imaging
- >20M new galaxies overlapping a 10,000 sqdeg Rubin footprint
- Sub-percent BAO precision, percent level RSD precision possible at z>2
- Immediate tests of concordance cosmology
- Pilot new programs during Stage-V construction

U.S. Department of Energy Office of Science

- Check arxiv for first major release (1pt statistics)
- DESI likely to exceed BAO science requirement
- Demonstrate RSD precision in ~1.5yrs
- Explore sigma8 improvements with 3yr sample
- Snowmass: motivate massive Stage-V expansion over all redshifts

Credit: Clara Delabrouille

Most important: Thank you to the firefighters and the NOIRLab staff

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 69 Participating Institutions!