

Fundamental Physics Research with Radioactive Atoms & Molecules

Figure modified from https://sphereofinfluence360.com/

1

Ronald Fernando Garcia Ruiz

MIT

A STATES OF MUS

14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2022)

Fundamental Physics Research with Radioactive Atoms & Molecules

What are the fundamental particles and forces of nature?

How do complex nuclear phenomena emerge?

Exotic Molecules and Atoms (EMA) Lab @MIT

Graduate students

H. Kakioka

A. Brinson

S. Udrescu S. Moroch

Postdocs

Support LNS/Bates

F. Pastrana

ΡΙ **R.F. Garcia Ruiz** A. Vernon

S. Wilkins

J. Karthein

I. Belosevic

UROPs

- Antonio Luera ٠
- Angel Luera •
- Athira Arayath •
- Nicolas Tanaka ٠
- **Erick Padilla** •
- Andoni Fernandez

A. Convertino E. Ihloff **D.** Petterson C. Vidal

Small Size – Big Science

RISE @ FRIB

Recent highlights:

- Nature 607, 260 (2022)
- Physical Review Letters 128, 022502 (2022)
- Nature Physics 17, 439 (2021)
- Physical Review Letters 127, 033001 (2021)
- Physical Review Letters 127, 192501 (2021)
- Nature 581, 396 (2020)
- Nature Physics 16, 120 (2020)
- Nature Comm. 11, 3824 (2020)
- Physical Review Letters 124, 132502 (2020)

Many exciting results: www.garciaruizlab.com/publications

Overview

- Why atoms & molecules?
- Recent results
 - Atoms
 - Molecules
- New Opportunities
- Summary & Outlook

- Why exotic atoms & molecules?
- Recent results
 - Atoms
 - Molecules
- New Opportunities
- Summary & Outlook

• Can we connect the description of nuclei with QCD?

7

• How do nuclear phenomena emerge?

.

Recent Highlights

IIA IVIA' I = 0 $\sim F \delta \langle r^2 \rangle^{A,A'}$ Atom/molecule
Nuclear I = 0Freq.

9

Freq.

11

[Koszorus et al. Nature Phys. 17, 439 (2021)] [Barzakh et a. Phys. Rev. Lett. 127, 192501 (2021)] [Reponen et al. Nature Comm. 12, 4596 (2021). [Degroote et al. Nature Phys. 16, 620 (2020)] [Kaufmann Phys. Rev. Lett. 124, 132502 (2020)] [Garcia Ruiz & Vernon EPJ A 56, 136 (2020)] [Gorges et al. Phys. Rev. Lett. 122, 192502 (2019)] [Garcia Ruiz et al. Nature Phys. 12, 594 (2016)]

Similar trends for neutron-rich

[Koszorus et al. Nature Phys. 17, 439 (2021)] [Barzakh et a. Phys. Rev. Lett. 127, 192501 (2021)] [Reponen et al. Nature Comm. 12, 4596 (2021). [Degroote et al. Nature Phys. 16, 620 (2020)] [Kaufmann Phys. Rev. Lett. 124, 132502 (2020)] [Garcia Ruiz & Vernon EPJ A 56, 136 (2020)] [Gorges et al. Phys. Rev. Lett. 122, 192502 (2019)] [Garcia Ruiz et al. Nature Phys. 12, 594 (2016)]

Can we use the properties of nuclei to constraint the properties of neutron stars?

Talks: Juliette Mammei Christian Drischler

[Brown. Phys. Rev. Lett. 119, 122502 (2017)] [Yang & Piekarewicz, PRC 97, 014314 (2018)]

$$\Delta R_{\rm ch} = R(^{54}{\rm Ni}) - R(^{54}{\rm Fe})$$

Equation of state of nuclear matter

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \,\delta^2 + \mathcal{O}(\delta)^4$$

$$E_{sym}(\rho) = S_v + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0} \right) + \cdots$$

$$Symmetry energy Slope ?$$

[S. Pineda Phys. Rev. Lett. 127, 182503 (2021)]

[Brown. Phys. Rev. Lett. 119, 122502 (2017)] [Yang & Piekarewicz, PRC 97, 014314 (2018)]

$$\Delta R_{\rm ch} = R(^{54}{\rm Ni}) - R(^{54}{\rm Fe})$$

Equation of state of nuclear matter

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \,\delta^2 + \mathcal{O}(\delta)^4$$

$$E_{sym}(\rho) = S_v + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0} \right) + \cdots$$

$$Symmetry \\ energy \\ Slope ?$$

[S. Pineda Phys. Rev. Lett. 127, 182503 (2021)]

[S. Pineda Phys. Rev. Lett. 127, 182503 (2021)]

Hyperfine Structure

Simple Structure of Complex Nuclei

"Indium isotopes (Z=49): A text book example" Heyde. "The Nuclear Shell Model". Springer (1995)

Challenging our textbook nuclear physics!

Simple Structure of Complex Nuclei

"Indium isotopes (Z=49): A text book example" Heyde. "The Nuclear Shell Model". Springer (1995)

Overview

- Why exotic atoms & molecules?
- Recent results
 - Atoms
 - Molecules
- New Opportunities (MIT & FRIB)
- Summary & Outlook

Molecules for EDMs measurements

|d_e| ≤ 1.1 x 10⁻²⁹ e · cm

Molecular enhancement > 10³

[ACME, Nature 562, 355 (2018)] [Baron et al. Science 343, 269 (2014)] [Sandars Phys. Rev. Lett. 18, 1396 (1967)]

19[Source: D. DeMille. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States (2019)]

Molecules: Extreme sensitivity to Hadronic PV

Demille's Talk: ZOMBIES: an experiment to measure nuclear anapole moments

Molecule:

Parity and Time reversal violation	> 10 ³
Parity violation	> 10 ¹¹

21 [Altunas et al. Phys. Rev. Lett. 120, 142501 (2018)]

R

B

Molecules: Extreme sensitivity to Hadronic PV

In collaboration with: <u>D. Demille's group (U Chicago & ANL)</u>, J. Dilling (TRIUMF), N. Hutzler (Caltech), K. Blaum (MPIK), R. Ringle (FRIB)

Inside Penning trap

Molecule:

E.

 $H_{PV} \sim F(Z^{c}) / (E_{+}^{e} - E_{-}^{e})$

J. Karthein

S. Udrescu

S. Moroch

- Parity and Time reversal violation > 10³
- Parity violation

> 10¹¹

21 [Altunas et al. Phys. Rev. Lett. 120, 142501 (2018)]

Radioactive molecules=> Best of all worlds!

Radioactive molecules=> Best of all worlds!

[Garcia Ruiz, Berger et al. Nature 581, 396 (2020)]

S. Udrescu

A. Brinson

S. Wilkins

23

Experimental details

<u>Warning:</u>

The following video contains bright, flashing lights that may cause discomfort or seizures for those with photosensitive epilepsy.

We overlap the isotopes with lasers

- I. Low-lying structure
- II. Feasibility of laser cooling?
- 1. Dominant $f_{00}? \rightarrow f_{00}/f_{ij} > 0.97$
 - 2. Short-lived excited state $(T_{1/2})? \rightarrow T_{1/2} < 50$ ns \Im

 \checkmark

3. Electronic states of lower energy (E)? \rightarrow 2000 cm⁻¹ above \Im

[Garcia Ruiz et al. Nature 581, 396 (2020)]

"Hot" molecules can be super cool!

nature

Explore content v About the journal v Publish with us v

Article Open Access Published: 27 May 2020

Spectroscopy of short-lived radioactive molecules

R. F. Garcia Ruiz 🗠, R. Berger 🗠, [...]

Nature 581, 396-400 (2020) Cite this article

PHYSICS TODAY

 HOME
 BROWSE*
 INFO*
 RESOURCES*
 JOBS

 D0I:10.1063/PT.6.1.20200611a

 JOBS

 </

Spectroscopy of molecules with unstable nuclei

Pinning down the energy transitions of radium monofluoride, and eventually other short-lived molecules, could reveal the ways they are influenced by the properties of heavy radioactive nuclei.

physicsworld

ATOMIC AND MOLECULAR | RESEARCH UPDATE

Exotic radioactive molecules could reveal physics beyond the Standard Model

CHEMISTRYWORLD

Molecular experiments hope to reveal new physics

BY ANDY EXTANCE | 5 JUNE 2020

Detecting extremely short-lived radium fluoride can explore standard model's limits

New opportunities for nuclear structure studies of the heaviest elements (e.g. ThO, PaO,...)

[Udrescu et al. Phys. Rev. Lett. 127, 033001 (2021)]

S. Udrescu

S. Wilkins

$$\sqrt{4} \sqrt{4} \sqrt{4} \sqrt{4} \sqrt{4}$$

$$(H_{mol} = H_e + H_{vib} + H_{rot} + \dots + H_{hfs} + H_{PV} + H_{PTV})$$

Distribution of nuclear magnetization in ²²⁵Ra

Distribution of nuclear magnetization in ²²⁵Ra

Overview

- Why exotic atoms & molecules?
- Recent results (ISOLDE-CERN)
 - Atoms
 - Molecules
- New Opportunities
- Summary & Outlook

Designer Molecules for Fundamental-Symmetry Tests

 \rightarrow RaOH⁺ and RaOCH $_{3}^{+}$ [Fan et al. Phys. Rev. Lett. 126, 023002 (2021)] [Yu & Hutzler Phys. Rev. Lett. 126, 023003 (2021)]

 \rightarrow Assembling molecules from cold atoms [Fleig & Demille]

[New J. Phys. 23, 113039 (2021)]

- RaAg
- FrAg

RISE (Resonance Ionization Spectroscopy Experiment) @ FRIB

Resonance Ionization Spectroscopy Experiment (RiSE) at FRIB

Major milestones achieved!

- \checkmark December 2020: RiSE project started Dec 2020
- April 2021: Beamline Design completed
- May 2021: Experimental parts are being ordered \checkmark
- September 2021: Laser setup for FRIB completed at MIT \checkmark
- Commissioning at Bates, MIT in February 2022 \checkmark
- Installed at FRIB in March 2022 \checkmark
- Successful experiments with ²⁷Al performed.

RISE beamline @ FRIB

RISE lasers @ FRIB

K. Minamisono

FRIB

First results with ²⁷Al @ FRIB

We are ready to study short-lived atoms & molecules at FRIB!

Two accepted proposals at FRIB:

- Proton halo/skin of Aluminum isotopes
- Atoms and molecules containing short-lived thorium isotopes **33**•

Resonance Ionization Spectroscopy Experiment (RiSE) at FRIB

Overview

- Why exotic atoms & molecules?
- Recent results (ISOLDE-CERN)
 - Atoms
 - Molecules
- New Opportunities (MIT & FRIB
- Summary & Outlook

35

Precision measurements of radioactive atoms and molecules offer unique opportunities in Nuclear Science

Precision measurements of radioactive atoms and molecules offer unique opportunities in Nuclear Science

A Bright Future Ahead!

Once-in-a-lifetime opportunity!

- New Facilities (FRIB)
- Precision (atomic, molecular, nuclear) Physics