New dark matter results from Xenon experiments

CIPANP 2022 Scott Hertel U. Massachusetts, Amherst

Outline

- Overview of LXe technology
- The LZ and XENONnT Detectors
- The XENON1T Excess
- First results from LZ (WIMP search)
- First results from XENONnT (Testing the Excess)
- Outlook

Signal 1: LXe Scintillation

...electron drift (order-100µs)

Signal 2: GXe light emission (after e-extraction)

full xyz position information Result: mm-scale in xy (better in z)

Advantages of LXe technology (I)

1. Coherent scattering cross section

Cross section scales as $\sim A^2$, and Xe is a high-number nucleus.

2. Discrimination and threshold

few-photon S1 threshold: few-keVnr

[S2:S1] ratio distinguishes signal vs bkgd. (nuclear recoil vs electron recoil)

Discrimination excellent down to S1 threshold

3. Self-shielding of external backgrounds

Gamma mean free path: few-cm scale (Again, because Xe is high-Z)

4. Extreme radiopurity of target

The Xe itself: Many isotopes, but remarkably, none is a long-lived beta decay (none is a 'problem')

Non-noble radioisotopes: straightforward to remove continuously via circulation/purification

All that remains: **non-Xe noble radioisotopes** Primary concern: Rn222 (daughter: Pb214) Also: Rn220, Kr85, Ar39, Ar37...

The larger the mass, the lower the backgrounds per mass

Dominant backgrounds scale with surface area rather than target mass. (gammas from external sources, radon emanation from vessel)

Background rate per mass:

Naive expectation: $\sim r^2 / m = m^{2/3} m^{-1} = m^{-1/3}$ *"this technology just wants to work"* Historical trend: much better, thanks to constant progress reducing Rn222 ($\sim m^{-1}$)

Water Tanks and Outer Detectors

LZ

XENONnT

XENONnT

–Top TPC grids -PTFE pillar

—PTFE reflector

HV feedthrough-

Field shaping elements

00

Bottom TPC grids

TPCs

LΖ

XENONnT

LZ and XENONnT: Complementary Design Choices

Outer Detector Technology (neutron tagging)	
Instrumented LXe 'Skin'	
Liquid Level Set Method	
Wire Grids	
Field Cage Setpoints	
Neutron Calibration Methods	
Xe circulation/purification	
Noble Distillation Methods	

LZ	XENONnT	
ed Liquid Scintillator	Gd-doped Water (not yet doped in first run)	
Yes	No	
Liquid Weir	Gas Belljar	
Woven	Parallel Wires	
de, Gate, Cathode, o PMT shields)	6 (extra point of voltage control at of the field cage)	
icated low-E sources: 'Be, DD w/reflector	DD + AmBe low-E source: YBe	
e pumps, hot Zr getter	Liquid phase pumps, Cu-base purification (+ some gas phas	
onsite distillation removed offsite)	Two distillation methods (next s	

Ideal situation for best making future design decisions!

11

Distillation Columns for separation of noble elements

Significant technological advancements from XENON collaboration Enables robust removal of noble radioisotopes from Xe "in line", on site

Rn Column

Boiled Xe lower in Rn (Rn stays in liquid) Demonstrated <1µBq/kg (1.7µBq/kg in first run)

XENON collaboration, Eur. Phys. J. C 77, 358(2017) M.Murra et al, arXiv:2205.11492

Kr/Ar Column

Similar but with more liquid/gas interfaces, taller Reverse philosophy: 'bad' stuff concentrated at top Achieved 56±36 ppq ^{nat}Kr in Xe Enabled powerful Ar37 calibration

XENON collaboration, Eur. Phys. J. C 77, 275 (2017) XENON collaboration, PTEP Vol 2022, Issue 5, May 2022

Excess in Electron Recoils

Appears only below ~7keV

Few-sigma significance (depending on assumed signal)

A challenge to the field since summer 2020.

Excess electronic recoil events in XENON1T Phys.Rev.D 102 (2020) 7, 072004

First Exposures of LZ and XENONnT

Near-simultaneous first exposures:

LZ: Fiducial Volume and Selections

- S2 charge-loss close to TPC wall leads to poor position resolution at radial boundary
 - Choose a central <u>fiducial volume</u> simultaneously with S2 threshold to make wall background leakage negligible for this analysis
 - 5.5 t fiducial mass (measured by uniformly dispersed tritium source)
- Prompt (< 0.5 µs) Skin and OD tag:</p>
 - Reduces naked L-, M-shell Xe127
 background by x5 by tagging γ-ray that escapes the TPC
- Delayed OD (and skin) tag:
 - 1200 µs window, ~ 200 keV threshold for n-capture tag - 5% false veto rate
 - Constraint on neutron background 0^{+0.2} for this analysis

LZ: Candidate Events after Selection

4.50

- ► 335 events in final dataset
- Define a Profile Likelihood Ratio (PLR) analysis over the following range:
 - ► 3 phd < S1c < 80 phd
 - S2 > 600 phd (~ 10 extracted electrons)

► S2c < 10⁵ phd

log₁₀(S2c [phd]) 3.25

LZ: Best fit model

Best fit of <u>zero</u> WIMP events at all masses, p-value = 0.96

Source	Expected Events	Best Fit
β decays + Det. ER	218 ± 36	222 ± 16
$ u { m ER} $	27.3 ± 1.6	27.3 ± 1.6
127 Xe	9.2 ± 0.8	9.3 ± 0.8
124 Xe	5.0 ± 1.4	5.2 ± 1.4
136 Xe	15.2 ± 2.4	15.3 ± 2.4
$^{8}\mathrm{B}~\mathrm{CE}\nu\mathrm{NS}$	0.15 ± 0.01	0.15 ± 0.01
Accidentals	1.2 ± 0.3	1.2 ± 0.3
Subtotal	276 ± 36	281 ± 16
³⁷ Ar	[0, 291]	$52.1^{+9.6}_{-8.9}$
Detector neutrons	$0.0^{+0.2}$	$0.0^{+0.2}$
$30 \mathrm{GeV/c^2}$ WIMP	_	$0.0^{+0.6}$
Total		333 ± 17
Expected from background sidebands), auxiliary dataset half lives, rate predictions fr simulations)	Combined expected	

d fit to data with counts as priors

Several comments on 37Ar

- Difficult for 37Ar to explain XENON1T Excess
 - Constraints on Ar37 from air ingress (w/Kr etc.)
 - Xe stored underground well before run
 - Distillation employed before start of run

- On the other hand: 37Ar expected in LZ context
 - Significant production of 37Ar in Xe via cosmic spallation while above ground (arXiv:2201.02858)
 - LZ's Xe transported underground shortly before run start (35d half-life)
 - Observed 37Ar rate consistent with expectation
 - 37Ar will be negligible in future running (same is true for 127Xe, by the way)

- Frequentist, 2-sided PLR test statistic
- Following recommendations from community white paper: Eur. Phys. J. C 81, 907 (2021)

• Best limit of $\sigma_{SI} = 5.9 \times 10^{-48}$ at 30 GeV/c²

- Green and yellow are the 1σ and 2σ sensitivity bands.
- Assume a spin independent (scalar) WIMPnucleon interaction

First LZ constraints on WIMP Dark Matter

- Spin-Dependent, assuming either WIMP-proton or WIMP-neutron interactions
- Xe has two isotopes with non-zero nuclear spin (both with unpaired neutrons)
- WIMP-proton sensitivity through higher-order nuclear effects
- Grey uncertainty band due to theoretical uncertainties on nuclear structure factors. A similar uncertainty applies for all other xenon experiments on this plot (i.e. PandaX-II, LUX, and XENON1T).

XENONnT: Fiducial Volume and Selections

Switching back to XENONnT

- In addition to quality cuts, events are required to pass a range of quality cuts:
 - An S2 over 500 PE
 - Not within $< 300 \ ns$ of a neutron veto event
- Events must be within ER band (NR band) blinded for now)
- Fiducial volume cut selects a mass of (4.37 ± 0.14) tonnes with low backgrounds

First Data from XENONnT

- Looking at a wider energy range than LZ, up to 140keV
- At low energies: still dominated by 214Pb
- At higher energies, dominated by two 2nd order weak processes!
 - ¹²⁴Xe 2ν ECEC
 - ¹³⁶Xe $2\nu\beta\beta$

First Data from XENONnT

Lowest background rate ever achieved: (16.1 ± 0.3) events/(t × yr × keV)

Can set new limits on ER signatures.

First XENONnT New Physics Searches

Solar Neutrino Magnetic Moment

 $\mu_{\nu} < 6.3 \times 10^{-12} \mu_{\rm R}$

Solar Axion Couplings

- Valid for axions with mass below 100 eV
- Best direct detection limit on g_{ae} (m<100eV)
- Best direct detection limit on $g_{a\gamma}$ (1<m<100eV)

First XENONnT New Physics Searches

- lacksquare
- lacksquare

• Two searches for Bosonic absorption (mono energetic peaks)

World-leading across much of the 1-140keV window

Maximum local significance: ~1.8σ (at ~109keV)

First XENONnT New Physics Searches

Nuclear Recoil region blinded through these ER analyses.

HV issue meant running at unusually low drift voltage (23 vs 193 V/cm), but remember: *"LXe technology wants to work."*

Looking forward to first WIMP results from XENONnT soon!

Outlook

Discovery may always be just around the corner.

In parallel: Joining forces to plan a future LXe experiment at the 50-100 t scale

XENON, LZ, DARWIN, and LZ have now formed 'XLZD Consortium' Initial meeting 27-29 June 2022 at Karlsruhe Inst. of Technology See <u>https://xlzd.org</u> and white paper (<u>arXiv:2203.02309</u>)

Next few years: Continue collecting data with existing (newly demonstrated) experiments

Outlook

Next experiment: keV regime will be dominated by *neutrinos* (rather than Pb214)

'LXe observatory' with WIMPs as one *part* of a broad portfolio.

The future is bright!

Sun

- pp neutrinos
- Solar metallicity
- ⁷Be, ⁸B, hep

Supernova

- Early alert
- Supernova neutrinos
- Multi-messenger astrophysics

