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• Neutron lifetime
• Why are we interested in it?
• How to measure it?
• How ultracold neutrons can help?

• Our new method for measuring neutron 
lifetime.

• Discussion of systematic effects
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Neutron lifetime puzzle may hint at new physics
• Implication for CKM unitarity (Vud) and primordial He abundance
• Two different methods

1. Beam method (CN), measures 𝜏β
2. Bottle method (UCN), measures 𝜏𝑛

• 10 seconds or 5σ discrepancy (unknown systematics or new physics?)

• Potential new physics/explanation
• Mirror neutrons
• Dark matter channels 
• Self-interacting dark matter clumps     

• Ultimately, the 𝜏𝑛 puzzle needs to be addressed with experiments
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Ultracold neutrons provide a sensitive tool for 

precision experiments

• Can be confined in material and magnetic bottles

− Longer observational time → precision measurements

− Serve as a unique probe for both basic and applied research

• Kinetic energy ~ gravitational energy ~ magnetic energy

− Gravitational potential: 100 neV/m

− Magnetic potential: 60 neV/T

• Typically: 

− Velocity < 8 m/s

− Kinetic energy < 300 neV

− Temperature < 4 mK

− Wavelength > 50 nm
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Our new experiment will provide check on the 

“beam” method

• Statistics for the beam experiments are dominated by 
a single experiment.

• Our goal is to measure 𝝉𝜷 using UCN with a total 

error of 1-2 seconds with totally different systematic 
effects compared to past “beam” experiments.

• 𝜏β > 𝜏𝑛, then possible new physics  

• if 𝜏β = 𝜏𝑛(from Bottle), then unaccounted 

systematic error in beam method
• Requires absolute measurements of two quantities 

to 0.1%
• Number of neutrons in the trap 
• Number of neutrons that decayed (measurement 

of charged particles)
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Utilizing a combination of passive and active 

shielding to reduce background

• The nature of the spallation source and UCN storage time allows us to eliminate prompt background.
• Outer layer of borated polyethylene to reduce neutron activation of inner layers
• Pb layer to reduce delayed gamma sources
• Active NaI array allows us to veto muons and further reduce gamma backgrounds.
• Outer polystyrene scintillator measures background from capture of upscattered UCN
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Two-layer scintillator box allows for further 

reduction in background

• Using deuterated polystyrene as both a UCN trap and as the in-situ 
detector.

• Light collection
• Using a few PMT to collect light from scintillator boxes
• Vacuum chamber lined with Teflon for diffusive light reflection (~96%)
• Outer layer of scintillator has a long decay time so that background and 

data can be collected separately (Phoswich)
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• Using deuterated polystyrene as both a UCN trap and as the in-situ 
detector, Fermi potential measured at 168 neV.

• Light collection
• Using 4 PMTs to collect light from scintillator boxes
• Vacuum chamber lined with Teflon for diffusive light reflection (>95%)
• Outer layer of PS scintillator has a long decay time so that background 

and data can be collected separately 

• Using electrons for charged particle detection.

Two-layer scintillator box allows for further 

reduction in background
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• Using deuterated polystyrene as both a UCN trap and as the in-situ 
detector, Fermi potential measured at 168 neV.

• Light collection
• Using 4 PMTs to collect light from scintillator boxes
• Vacuum chamber lined with Teflon for diffusive light reflection (>95%)
• Outer layer of PS scintillator has a long decay time so that background 

and data can be collected separately 

• Using electrons for charged particle detection.
• Neutron detection using 3He gas, n + 3He = p + T+ 764 keV.
• Detector efficiencies will be determined using gamma tagged sources

• Extraction of                      using 
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Test shows 3He can be pumped out 

5x10-8 Torr of 3He  1 s effect on lifetime
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Neutron reflectometry shows dPS VF= 168.7 neV

• Measurement taken at LANSCE 
(Asterix beamline)

• Surface roughness of the scintillator 
produced off-specular reflection 
backgrounds

• Multiple incident angle 
measurements were taken to 
reduce the error in BG subtraction

• Fermi Potential measured to be 
168.7+/-1.6 neV, compared to 
theoretical of 170 neV.
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Test shows dPS scintillator exhibits good UCN reflectivity

• Pinhole technique to measure the lifetime of bottle
• Comparing scintillator in/out results
• Loss parameter: 4.9 +/- 0.8 x 10-4

• Count rate of 2180-5640 decays per fill based on 39 UCN/cc 
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Scintillator deadlayer sufficient for proton detection
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α Sources
• Best fit => 1.55 +/- 0.2 um 

• Using Birk’s law 
𝑑𝐿

𝑑𝑥
= 𝑆

𝑑𝐸/𝑑𝑥

(1+𝑘𝑏𝑑𝐸/𝑑𝑥 )
, we expect protons will 

have a factor 4 reduction compare to Am-241
• Also heat treated scintillator with Ar and N (similar results)
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Optimization of scintillator thickness

• Need to eliminate electron punch through events to prevent rejection of beta 

signal by “long” decay time scintillator

• Varied the energy cut-off of the “long” scintillator and thickness of the “short” 

scintillator
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threshold (keV) T @ 3.0 mm (%) T @ 3.5 mm (%) T @ 4.0 mm (%)

10 0.62 0.36 0.34

30 0.44 0.19 0.16

50 0.36 0.12 0.10

75 0.30 0.08 0.06

100 0.25 0.05 0.04
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Background measurement and rejection 
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• In the phoswich setup, we cannot shield the “long” scintillator from upscattered UCN
• Simulation shows that “long” scintillator overestimates background

• Different geometries
• H and D have very different σn

• H background at ~0.6%
• Need to use D“long” scintillator

• Background negligible at 3% H
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Prototype cell efficiency measurement 

We plan to test the prototype cell using g tagged bs from 134Cs
• The 134Cs source has a clear gamma line at 605 keV, but we 

need to combine the multiple beta spectra, mainly from 89 
keV (27.3%) and 650 keV (70.3%) 

• The prototype cell is assembled all from hydrogen-based 
scintillators.

• The measurement will be performed with 2 PMTs and up to 
2 HPGe detectors.

134Cs

85.5%
796 keV g
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Upcoming experiment to study Helium diffusion into 

scintillator

• 3He in the scintillator can capture upscattered UCN, 

which may mimic a beta signal.

• Measure spectra before and after saturating the 

scintillator with 3He.

• Use large amount of 3He and a long holding time to 

enhance the effect.

• We also plan to collect a pristine beta decay

spectrum before injection of any 3He.

• Final result will be a two-parameter fit of the beta 

spectrum and the (n,p)3He signature. 
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Status

• Inputs from prototype cell measurements will influence final design

• Fabricated all “short” decay time deuterated scintillators

Timeline:

2023: Design and fabrication

2024: Assembly and calibration

2025: Commissioning run to study systematic effects

2026: Data taking (~400 hrs => 1s)

8/31/202217
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