

Ultra-Cold Neutron measurement of Proton branching ratio in neutron Beta decay (UCNProBe)

Zhaowen Tang, Los Alamos National Lab

09/01/2022

- Neutron lifetime
 - Why are we interested in it?
 - How to measure it?
 - How ultracold neutrons can help?
- Our new method for measuring neutron lifetime.
- Discussion of systematic effects

Neutron lifetime puzzle may hint at new physics

- Implication for CKM unitarity (V_{ud}) and primordial He abundance
- Two different methods
 - 1. Beam method (CN), measures τ_{β}
 - 2. Bottle method (UCN), measures τ_n
- 10 seconds or 5σ discrepancy (unknown systematics or new physics?)

$$\frac{1}{\tau_n} = \frac{1}{\tau_\beta} + \frac{1}{\tau_{new \ physics??}}$$

- Potential new physics/explanation
 - Mirror neutrons
 - Dark matter channels
 - Self-interacting dark matter clumps
- Ultimately, the au_n puzzle needs to be addressed with experiments

Ultracold neutrons provide a sensitive tool for precision experiments

- Can be confined in material and magnetic bottles
 - Longer observational time \rightarrow precision measurements
 - Serve as a unique probe for both basic and applied research
- Kinetic energy ~ gravitational energy ~ magnetic energy
 - Gravitational potential: 100 neV/m
 - Magnetic potential: 60 neV/T
- Typically:
 - Velocity < 8 m/s
 - Kinetic energy < 300 neV
 - Temperature < 4 mK
 - Wavelength > 50 nm

Our new experiment will provide check on the "beam" method

- Statistics for the beam experiments are dominated by a single experiment.
- Our goal is to measure τ_{β} using UCN with a total error of 1-2 seconds with totally different systematic effects compared to past "beam" experiments.
 - $\tau_{\beta} > \tau_n$, then possible new physics
 - if $\tau_{\beta} = \tau_n$ (from Bottle), then unaccounted systematic error in beam method
- Requires absolute measurements of two quantities to 0.1%
 - Number of neutrons in the trap
 - Number of neutrons that decayed (measurement of charged particles)

Utilizing a combination of passive and active shielding to reduce background

- The nature of the spallation source and UCN storage time allows us to eliminate prompt background.
- Outer layer of borated polyethylene to reduce neutron activation of inner layers
- Pb layer to reduce delayed gamma sources
- Active Nal array allows us to veto muons and further reduce gamma backgrounds.
- Outer polystyrene scintillator measures background from capture of upscattered UCN

Two-layer scintillator box allows for further reduction in background

- Using deuterated polystyrene as both a UCN trap and as the in-situ detector.
- Light collection
 - Using a few PMT to collect light from scintillator boxes
 - Vacuum chamber lined with Teflon for diffusive light reflection (~96%)
 - Outer layer of scintillator has a long decay time so that background and data can be collected separately (Phoswich)

Two-layer scintillator box allows for further reduction in background

- Using deuterated polystyrene as both a UCN trap and as the in-situ detector, Fermi potential measured at 168 neV.
- Light collection
 - Using 4 PMTs to collect light from scintillator boxes
 - Vacuum chamber lined with Teflon for diffusive light reflection (>95%)
 - Outer layer of PS scintillator has a long decay time so that background and data can be collected separately
- Using electrons for charged particle detection.

Two-layer scintillator box allows for further reduction in background

- Using deuterated polystyrene as both a UCN trap and as the in-situ detector, Fermi potential measured at 168 neV.
- Light collection
 - Using 4 PMTs to collect light from scintillator boxes
 - Vacuum chamber lined with Teflon for diffusive light reflection (>95%)
 - Outer layer of PS scintillator has a long decay time so that background and data can be collected separately
- Using electrons for charged particle detection.
- Neutron detection using 3 He gas, n + 3 He = p + T+ 764 keV.
- Detector efficiencies will be determined using gamma tagged sources

• Extraction of
$$\frac{1}{\tau_{\beta}} = \frac{\beta(t)}{N(t)}$$
 using $N(t) = N_f e^{(t_f - t)/\tau}$

Test shows ³He can be pumped out

 $5x10^{-8}$ Torr of ${}^{3}\text{He} \Rightarrow 1$ s effect on lifetime

Neutron reflectometry shows dPS V_F= 168.7 neV

- Measurement taken at LANSCE (Asterix beamline)
- Surface roughness of the scintillator produced off-specular reflection backgrounds
- Multiple incident angle measurements were taken to reduce the error in BG subtraction
- Fermi Potential measured to be 168.7+/-1.6 neV, compared to theoretical of 170 neV.

Ultracold neutron properties of the Eljen-299-02D deuterated scintillator

Review of Scientific Instruments 92, 023305 (2021); https://doi.org/10.1063/5.0030972

^(b) Z. Tang^{1,a)}, E. B. Watkins¹, ^(b) S. M. Clayton¹, S. A. Currie¹, D. E. Fellers¹, Md. T. Hassan¹, D. E. Hooks¹, ^(b) T. M. Ito¹, S. K. Lawrence¹, S. W. T. MacDonald¹, M. Makela¹, ^(b) C. L. Morris¹, L. P. Neukirch¹, ^(b) A. Saunders^{1,b)}, C. M. O'Shaughnessy¹, C. Cude-Woods^{2,c)}, J. H. Choi², A. R. Young², B. A. Zeck^{2,c)}, F. Gonzalez³, C. Y. Liu³, N. C. Floyd^{4,c)}, K. P. Hickerson⁵, A. T. Holley⁶, ^(b) B. A. Johnson^{7,c)}, J. C. Lambert^{7,c)}, and ^(b) R. W. Pattie⁸

Test shows dPS scintillator exhibits good UCN reflectivity

Boron Film

Detector

- Pinhole technique to measure the lifetime of bottle
 - Comparing scintillator in/out results
 - Loss parameter: 4.9 +/- 0.8 x 10⁻⁴
 - Count rate of 2180-5640 decays per fill based on 39 UCN/cc

Scintillator deadlayer sufficient for proton detection

Optimization of scintillator thickness

- Need to eliminate electron punch through events to prevent rejection of beta signal by "long" decay time scintillator
- Varied the energy cut-off of the "long" scintillator and thickness of the "short" scintillator

threshold (keV)	T @ 3.0 mm (%)	T @ 3.5 mm (%)	T @ 4.0 mm (%)
10	0.62	0.36	0.34
30	0.44	0.19	0.16
50	0.36	0.12	0.10
75	0.30	0.08	<mark>0.06</mark>
100	0.25	0.05	0.04

13

Background measurement and rejection

- In the phoswich setup, we cannot shield the "long" scintillator from upscattered UCN
- Simulation shows that "long" scintillator overestimates background
 - Different geometries
 - H and D have very different σ_n
 - H background at ~0.6%
- Need to use D"long" scintillator
- Background negligible at 3% H

Prototype cell efficiency measurement

We plan to test the prototype cell using γ tagged β s from ¹³⁴Cs

- The ¹³⁴Cs source has a clear gamma line at 605 keV, but we need to combine the multiple beta spectra, mainly from 89 keV (27.3%) and 650 keV (70.3%)
- The prototype cell is assembled all from hydrogen-based scintillators.
- The measurement will be performed with 2 PMTs and up to 2 HPGe detectors.

Upcoming experiment to study Helium diffusion into scintillator

- ³He in the scintillator can capture upscattered UCN, which may mimic a beta signal.
- Measure spectra before and after saturating the scintillator with ³He.
- Use large amount of ³He and a long holding time to enhance the effect.
- We also plan to collect a pristine beta decay spectrum before injection of any ³He.
- Final result will be a two-parameter fit of the beta spectrum and the (n,p)³He signature.

- Inputs from prototype cell measurements will influence final design
- Fabricated all "short" decay time deuterated scintillators

Timeline: 2023: Design and fabrication 2024: Assembly and calibration 2025: Commissioning run to study systematic effects 2026: Data taking (~400 hrs => 1s)

Acknowledgements

Los Alamos National Laboratory Z. Tang, C. Morris, S. Clayton, Md. T. Hassan, T. Ito, M. Makela, and C. O'Shaughnessy.

University of Kentucky N. Floyd.

California Institute of Technology K. Hickerson.

Eastern Tennessee State University R.W. Pattie.

Tennessee Technological University Adam Holley.

North Carolina State University C. Cude-Woods and A. R. Young

Indiana University W. Snow

Supports from: DOE SC-NP LANL LDRD program LABORATORY DIRECTED RESEARCH & DEVELOPMENT