Charged Lepton Flavor Violation Experiments with Muons:

R. Bernstein Fermilab

CIPANP 2022 Lake Buena Vista, Florida

Topics

- What is Charged Lepton Flavor Violation (CLFV) and how does it relate to flavor physics in general?
- Why do CLFV experiments with muons?
- What are the experiments that will be done in muon beams, and what are their contributions?
- A few words about collider CLFV and 3rd generation

Problem of Generations

- Why are there generations at all?
- three generations of quarks; three of leptons, three of neutrinos
- why more than one? why three?

Flavor Physics

- Flavor is the name we give to the physics that distinguishes the generations
 - are quark flavors related to lepton flavors?
 - is there flavor universality?
 - from $B \to Kll$ ratios to $\pi \to l\nu$
 - what is flavor? why are there generations? we don't know.
- One of our Snowmass conclusions was that flavor should have its own P5 "driver"

Flavor Physics and Mixing

- Quarks and neutrinos (aka neutral leptons) change flavor
- PMNS and CKM matrices are very different

• why don't charged leptons change flavor?

Rare Processes and Precision Measurements

adapted from V. Cirigliano and M.J. Ramsey-Musolf, 1304.0017

So Flavor Physics is Interesting

R. Bernstein, FNAL

CLFV and Neutrinos

Feinberg, 1958

¹Unless we are willing to give up the 2-component neutrino theory, we know that $\mu \rightarrow e + \nu + \overline{\nu}$.

- $\mu \rightarrow e\gamma$ "should" be around 10^{-4}
- observed suppression implied
 - the muon is not just an excited electron
 - at least two neutrinos

Neutrino Background

 Neutrino Oscillations are the only Standard Model background, except neutrino oscillations are not in the Standard Model

• nobody understood why $\mu \rightarrow e\gamma$ wasn't 10⁻⁴ until we hypothesized two neutrinos ($V_{\mu} \neq V_{e}$)! R. Bernstein (FNAL) 9 CIPANP 2022

CLFV Muon Processes

- oldest studied, most powerful limits, and the best experiment so far: MEG at PSI
- $\mu N \rightarrow eN$

• $\mu \rightarrow e\gamma$

 muon to electron conversion: muon converts in field of nucleus, leaving nucleus unchanged

$$R_{\mu e} = \frac{\Gamma(\mu^- + N(A, Z) \to e^- + N(A, Z))}{\Gamma(\mu^- + N(A, Z) \to \text{all muon captures})}$$

• two experiments upcoming at FNAL and JPARC

• $\mu \rightarrow eee$

ambitious and unique, excellent partner to other two (at PSI)
 R. Bernstein (FNAL)
 10
 PASCOS 2016

What New Physics Can Muons

- Each of these diagrams has a different sensitivity in $\mu \rightarrow e\gamma$, and $\mu \rightarrow 3e$, and $\mu^- N \rightarrow e^- N$
- All three in order to pin down a signal or increase constraints

Dipole: SUSY-GUT and SUSY see-saw scenarios, ...

Scalar: RPV SUSY and RPC SUSY for large $tan(\beta)$ and low m_A , leptoquarks, ...

Vector Type III seesaw, LRSM, leptoquarks, ...

4-lepton: Type II seesaw, RPV SUSY, LRSM, ...

PASCOS 2016

Effective Lagrangian

μe Conversion and $\mu \rightarrow e\gamma$

1) Mass Reach to ~10⁴ TeV for unit coupling, x10000 existing experiments

2) *Mu2e/MEG upgrade complementary in loop-dominated physics.*

3) These are discovery experiments

EFT: beyond κ and Λ

- Write EFT Lagrangian:
 - Dipole $(\mu \rightarrow e\gamma)$ + Contact Scalar $(\mu \rightarrow 3e)_{L}$ + Contact Vector $(\mu \rightarrow 3e)_{R}$ + Contact $\mu N \rightarrow eN$ (light nuclei) + Contact $\mu N \rightarrow eN$ (heavy nuclei)
- Parameterize coefficient space with spherical coordinates: *lets you express constraints on all three processes simultaneously*
- Will show you "slices" in the multi-dimensional space

Mass Reach

Davidson-Echenard 2204.00564

like κ ; $|\kappa_D| < < 1$ dipole dominant; $|\kappa_D| > > 1$ four-fermion dominantR. Bernstein (FNAL)15CIPANP 2022

All Three Muon Experiments

• $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$ at $\mathcal{O}(10^{-15})$ are a next-gen target

R. Bernstein (FNAL)

Why Muons

Facility		Experiment	stopped μ/sec
PSI	μ^+	MEG, Mu3e	few $\times 10^8$
$\mathrm{PSI/HiMB}$	μ^+	MEG, Mu3e	$\mathcal{O}(10^{10})$
J-PARC	μ^-	COMET Phase I	3×10^{10}
		COMET Phase-II	$7 imes 10^{10}$

FNAL	μ^{-}	Mu2e	3×10^{10}
FNAL/PIP-II	μ^{-}	Mu2e-II	3×10^{11}
FNAL-AMF	μ^{\pm}	ENIGMA	$O(10^{13})$

BR's 10^{-13} to 10^{-20} depending on mode

R. Bernstein (FNAL)

Compare to τ 's

• Smaller samples

au's help pin down models and sometimes biggest BR

R. Bernstein, FNAL

20

Swagato Banerjee, this conf. CIPANP 2022

Stopped vs. Capture

- Decay experiments: $\mu^+ \rightarrow e^+ \gamma, \ \mu^+ \rightarrow 3e$
 - bring positive muons to rest in material and let them decay
 - best in the world with "stopped muon beam" at PSI
 - want a "DC" beam to minimize accidental coincidences from two events. PSI perfect.
- Capture experiments: $\mu^- N \rightarrow e^- N$
 - bring negative muons to rest; fall into 1s state; interact with nucleus.
 - want a "pulsed" beam of order muon lifetime to eliminate π -induced background

MEG and $\mu \rightarrow e\gamma$

- Kinematics simple:
 - back-to-back and γ and e in-time

$$\theta_{e\gamma} = 180^{\circ}$$

$$E_e = E_{\gamma} = 52.8 \text{ MeV}$$

$$T_e = T_{\gamma}$$

$$\psi$$

$$\psi$$
stein (FNAL) 22 CIPANP 2022

Backgrounds

• Accidental: Dominant

photon produced in muon stop

- Radiative Muon Decay
 - neutrinos have small energy/momentum

R. Bernstein (FNAL)

Standard Model weak decay

MEG Experiment

MEG-II Upgrade

Renga, <u>10.22323/1.405.0058</u>

- Improve Calorimeter, Timing, Drift Chamber, Trigger
- First physics run in 2021, analysis underway
- x10 improvement to $4\times 10^{-14} @\,90\,\%\,\text{CL}$

CIPANP 2022

What's Next?

- HiMB PSI upgrade will increase muon rate by x10 post 2028
- but at some point resolutions make experiment background-dominated
- converting photon would allow forming a vertex
 - right now don't know vertex since the calorimeter measures a space point far from decay point
- but conversion loses ~x100 in rate
 - need a thin converter or too much dE/dx, MS

Limits on Experiment

• Methods level out after $\mathcal{O}(10^9)\mu/\mathrm{sec}$ with or without conversion

Renga et al., https://arxiv.org/pdf/1707.01805.pdf

R. Bernstein (FNAL)

MEG-III?

- New experimental concepts required for use of HiMB rate
 - decay ring?
 - Active target/better vertexing?
 - Under study
 - Can it use AMF at FNAL?

Mu3e: $\mu \rightarrow 3e$

- We established this is different physics from $\mu \to e \gamma$ and $\mu^- N \to e^- N$
- Get a vertex from three tracks, but lose back-to-back constraint of $\mu \to e \gamma$
- Background is $\mu^+ \to e^+ (e^+ e^-) \bar{\nu}_{\mu} \nu_e$ with small neutrino four-momenta

R. Bernstein (FNAL)

29

Hesketh et al., 2204.0001

CIPANP 2022

Mu3e Outlook

- Phase-I 2024 is before HiMB at $2 \times 10^{-15} @ 90 \%$ CL
- Phase-II post 2028 at $\mathcal{O}(10^{-16})$

• also $\mu^+ \to e^+ X$ and into long-lived $X \to e^+ e^-$

What is Muon to Electron Conversion?

$$\mu^- N \to e^- N$$

- Muon converts to an electron in the field of a nucleus
- Signal is mono-energetic electron ~ muon mass
- Mu2e or COMET 90 % CL \Rightarrow 8 × 10⁻¹⁷; 5 σ \Rightarrow 2 × 10⁻¹⁶

R. Bernstein (FNAL)

Mu2e Method

- Three solenoids
 - produce and capture muons (PS)
 - transport to AI stopping target (TS)
 - detect signal electrons (DS)

with apologies to our COMET friends; experiments are similar but important differences; ask me

R. Bernstein (FNAL)

PS

Mu2e Time Structure

- We get μ 's from pN in production target: $p + \text{Target} \rightarrow \pi$, then $\pi \rightarrow \mu$
- sometimes π 's live long enough to make it to AI target
 - Radiative Pion Capture: $\pi^- N \to \gamma N', \gamma \to e^+ e^-$
 - if we see only e⁻ and it is near muon mass, it is a background
- this limited PSI versions since their beam is "DC" and can't take advantage of short π lifetime relative to μ

Pulsed Beam

- Beam pulses are 1695 ns apart, set by FNAL rings
 - fortunate coincidence when compared to 2.2 μ s lifetime!

R. Bernstein (FNAL)

typical SUSY at 10-15: 40 events vs 0.4 bkg

R. Bernstein (FNAL)

Mu2e Schedule

- x1000 existing
 experiments by
 2025
 - in construction!
- x10000 by end-ofdecade

CIPANP 2022

What Next?

- Mu2e-II
 - x10 limits and move to Ti; about x2 higher rate
 - re-use Mu2e as much as possible
 - being designed, will run after Mu2e
- Mu2e and Mu2e-II can't probe high Z

Probing High Z

 different operators split at high Z, distinguishing among models _____ Z Penguin _____ Charge Radius _____ Dipole _____ Scalar

adapted from V. Cirigliano, B. Grinstein, G. Isidori, M. Wise Nucl.Phys.B728:121-134,2005 R. Bernstein (FNAL) 38 CIPANP 2022

Mu2e Method Limitation

- Captured µ
 lifetime
 depends on Z
- Can't probe high Z at Mu2e, since lifetime is within beam pulse

New Facility: AMF hep-ex 2203.08278

- The "Advanced Muon Facility" would use PIP-II to enable
 - CLFV in all three muon modes: world-leading facility
 - two new small rings for $\mu N \to e N$ at high Z and additional x100 in rate
 - with a possible DM experiment
 - x100-1000 more beam for $\mu \to e \gamma$ and $\mu \to 3 e$ than are possible at PSI
 - Possible muonium-antimuonium and muon EDM

Conclusions

- Muon-based Charged Lepton Flavor Violation provides powerful searches and constraints for BSM physics
- A new facility at FNAL could provide all three muon channels, $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, and $\mu N \rightarrow eN$ with orders of magnitude more data and open new possibilities in $\mu N \rightarrow eN$ at high Z
 - plus a dark matter experiment and other muon measurements not discussed.
- We hope for P5 to recommend design of the program with submission to next P5