

ATLAS Measurements of CP-Violation and Rare Decay Processes with B-Mesons

Dr Andy Wharton – On Behalf of the ATLAS Collaboration.

CIPANP22 - Lake Buena Vista, FL, USA: 1st September, 2022

Introduction

- ATLAS has a rich and diverse physics program.
- Focus today on two b-physics results + future prospects:
 - CP-Violation in $B_s \rightarrow J/\psi \phi$ decays, *Eur. Phys. J. C* **81**, 342 (2021).
 - Run1 + 2015-2017
 - The rare decay $B_s \rightarrow \mu^+\mu^-$, <u>J. High Energ. Phys. **2019**</u>, 98 (2019).
 - Run1 + 2015-2016
 - Also <u>ATLAS-CONF-2020-049</u> for LHC combinations.
- Other public results can be found <u>here</u>.
- And talks here at CIPANP22, <u>HE</u>, <u>HP</u>, and <u>CKM</u> tracks...

b-Physics in ATLAS

- 139 fb⁻¹ of pp collisions collected during the LHC's Run2.
 - + 26.9 fb⁻¹ during Run1.
 - > 2 Million bb pairs a second
- b-Physics studies focus mainly on:
 - Muonic states + full-reconstruction.
- Low-p_T (di-)muon triggers.
 - Vertex/Mass cuts for J/ψ -like triggers.
 - Tracks + cuts for 3/4/5 track signals.

CP-Violation in $B_s \rightarrow J/\psi \phi$ Decays

CP-Violation in $B_s \rightarrow J/\psi \phi$ Decays

- Neutral meson oscillation + Decay \rightarrow Interference + CP-Violation.
- Was (one of many) "Golden Channels" in b-physics for a long time...
 NP in b → ccs, colour singlets, colour octets, and many, many others!
- Focus now comparison of direct measurements vs global fits.

• $\Phi_s \approx -2\beta_s = -0.03696^{+0.00072}_{-0.00082}$ rads [<u>CKMFitter</u>], if no NP in mixing.

- Signal decay is pseudo-scalar \rightarrow vector + vector...
 - Untangle CP-even/odd states with a time-dependent angular analysis.
- The end-state is $B_s \rightarrow J/\psi(\mu^+\mu^-) \phi(K^+K^-)$
 - Additional non-resonant KK contribution also fitted.
- Four decay amplitudes + interference \rightarrow 10 term PDF:
 - Each with an amplitude, kinematic, flavour, and angular component.
 - Measure signal candidate lifetime + angles (+ errors).
 - Production flavour of the signal candidate.
 - Fit for:
 - Γ_s , $\Delta\Gamma_s$, Φ_s , 3 amplitudes + 3 phases for CP-even/odd states.
 - Fit other PDF parameters from public results.
 - ΔM_s from the <u>PDG</u>, λ_s (direct CP-violation) is fixed to 1.

k	$O^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) \mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} + (1-\cos\phi_s) \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t} \pm 2\mathrm{e}^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_{s})\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp2\mathrm{e}^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{ }(0) \cos\delta_{ }\left[(1+\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1-\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\pm2\mathrm{e}^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2\theta_T \sin 2\phi_T$
5	$ A_{\parallel}(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}-\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos(\delta_{\perp}-\delta_{\parallel})\sin\phi_{s}\pm\mathrm{e}^{-\Gamma_{s}t}(\sin(\delta_{\perp}-\delta_{\parallel})\cos(\Delta m_{s}t)-\cos(\delta_{\perp}-\delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos\delta_{\perp}\sin\phi_s \pm \mathrm{e}^{-\Gamma_s t}(\sin\delta_{\perp}\cos(\Delta m_s t) - \cos\delta_{\perp}\cos\phi_s\sin(\Delta m_s t))\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
7	$\frac{1}{2} A_{S}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_{S}(0) A_{\parallel}(0) \left[\frac{1}{2} (\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}) \sin(\delta_{\parallel} - \delta_{S}) \sin\phi_{s} \pm \mathrm{e}^{-\Gamma_{s}t} (\cos(\delta_{\parallel} - \delta_{S}) \cos(\Delta m_{s}t) - \sin(\delta_{\parallel} - \delta_{S}) \cos\phi_{s} \sin(\Delta m_{s}t)) \right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
9	$\frac{1}{2}\alpha A_{S}(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_{S})\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
10	$\alpha A_0(0) A_S(0) \left[\frac{1}{2} (\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}) \sin \delta_S \sin \phi_s \pm \mathrm{e}^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t)) \right]$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$

	Kinematics.	
k	$O^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1 + \cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 - \cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{ }(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\pm2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$
4	$\frac{1}{2} A_0(0) A_{ }(0) \cos \delta_{ } \left[(1+\cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$
5	$ A_{\parallel}(0) A_{\perp}(0) \left[\frac{1}{2}(\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t} - \mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}\right] \pm \mathrm{e}^{-\Gamma_{s}t}(\sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m_{s}t) - \cos(\delta_{\perp} - \delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$
6	$ A_0(0) A_{\perp}(0) \left[\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s \pm e^{-\Gamma_s t}(\sin\delta_{\perp}\cos(\Delta m_s t) - \cos\delta_{\perp}\cos\phi_s\sin(\Delta m_s t))\right]$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$
7	$\frac{1}{2} A_{s}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$\alpha A_{S}(0) A_{\parallel}(0) \left[\frac{1}{2} (e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t}) \sin(\delta_{\parallel} - \delta_{S}) \sin\phi_{s} \pm e^{-\Gamma_{s}t} (\cos(\delta_{\parallel} - \delta_{S}) \cos(\Delta m_{s}t) - \sin(\delta_{\parallel} - \delta_{S}) \cos\phi_{s} \sin(\Delta m_{s}t)) \right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
9	$\frac{1}{2}\alpha A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S)\left[(1-\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{L}}^{(s)}t}+(1+\cos\phi_s)\mathrm{e}^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp 2\mathrm{e}^{-\Gamma_S t}\sin(\Delta m_s t)\sin\phi_s\right]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin 2\theta_T\cos\phi_T$
10	$\alpha A_0(0) A_S(0) \left[\frac{1}{2} (e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t}) \sin \delta_S \sin \phi_s \right] \pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$

17:

Amplitudes.

Amplitudes.

Kinematics.

4	$\frac{1}{2} A_0(0) A_{ }(0) \cos\delta_{ } \left(1+\cos\phi_s\right)e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s)e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
5	$ A_{\parallel}(0) A_{\perp}(0) \left[\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s} \pm e^{-\Gamma_{s}t}(\sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta m_{s}t) - \cos(\delta_{\perp} - \delta_{\parallel})\cos\phi_{s}\sin(\Delta m_{s}t))\right]$	$-\sin^2\psi_T\sin 2\theta_T\sin\phi_T$

$$\begin{array}{l}
6 \quad |A_0(0)||A_{\perp}(0)| \left[\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s \pm e^{-\Gamma_s t}(\sin\delta_{\perp}\cos(\Delta m_s t) - \cos\delta_{\perp}\cos\phi_s\sin(\Delta m_s t))\right] \\
7 \quad \left[\frac{1}{2}|A_s(0)|^2\left[(1 - \cos\phi_s)e^{-\Gamma_{L}^{(s)}t} + (1 + \cos\phi_s)e^{-\Gamma_{H}^{(s)}t} \mp 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right] \\
8 \quad \alpha|A_s(0)||A_{\parallel}(0)| \left[\frac{1}{2}(e^{-\Gamma_{L}^{(s)}t} - e^{-\Gamma_{H}^{(s)}t})\sin(\delta_{\parallel} - \delta_s)\sin\phi_s \pm e^{-\Gamma_s t}(\cos(\delta_{\parallel} - \delta_s)\cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_s)\cos\phi_s\sin(\Delta m_s t))\right] \\
9 \quad \left[\frac{1}{2}\alpha|A_s(0)||A_{\perp}(0)|\sin(\delta_{\perp} - \delta_s)\left[(1 - \cos\phi_s)e^{-\Gamma_{L}^{(s)}t} + (1 + \cos\phi_s)e^{-\Gamma_{H}^{(s)}t} \mp 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right] \\
\end{array}$$

$$\frac{1}{2}\alpha|A_{S}(0)||A_{\perp}(0)|\sin(\delta_{\perp}-\delta_{S})| (1-\cos\phi_{s})e^{-\Gamma_{\perp}t} + (1+\cos\phi_{s})e^{-\Gamma_{H}t} \mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s} |$$

$$\frac{1}{3}\sqrt{6}\sin\psi_{T}\sin2\theta_{T}\cos\phi_{T}$$

$$\frac{1}{3}\sqrt{6}\sin\psi_{T}\sin2\theta_{T}\cos\phi_{T}$$

$$\frac{4}{3}\sqrt{3}\cos\psi_{T}(1-\sin^{2}\theta_{T}\cos^{2}\phi_{T})$$

Amplitudes.

 $O^{(k)}(t)$

k

1

2

3

10

Flavour.

Angles.

 $2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$

 $\sin^2 \psi_T (1 - \sin^2 \theta_T \sin^2 \phi_T)$

 $g^{(k)}(heta_T,\psi_T,\phi_T)$

 $\sin^2 \psi_T \sin^2 \theta_T$

Flavour Tagging - 1

• Tag the signal candidates flavour from the pair-produced b-quark.

- Looking for muons, electrons, or b-tagged jets.
- Build a `cone charge`, Q_x , as sum of p_T weighted charges.

•
$$Q_x = \frac{\sum_i q_i \cdot p_{\tau i}^{\kappa}}{p_{\tau i}^{\kappa}}$$

• Calibrated/optimised on the self-tagging $B^{\pm} \rightarrow J/\psi K^{\pm}$ channel.

Flavour Tagging - 2

• From the cone charge, build per-candidate tag probability.

•
$$P(B|Q) = \frac{P(Q|B^+)}{P(Q|B^+) + P(Q|B^-)}$$

- Classify taggers by efficiency, dilution, and tagging power.
 - How often, how often right, how good over all...

Tag method	ϵ_x [%]	D_x [%]	T_x [%]	
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009	
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004	
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006	
Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.006	
Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.01	

Fits to Data

- Fit is performed using a 10D UML:
 - Observables:
 - Mass, lifetime, angles.
 - Conditional observables:
 - Trigger weight, measurement errors, Q_X
- Fit PDFs for:
 - Signal
 - Combinatorial background
 - Peaking backgrounds (B_d and Λ_b)
 - Punzi terms.
 - Model differences for signal/background.

Fit Results

• Compatible with SM predictions.

• Some tension in $\Delta\Gamma_s$, second solution in δ_{\parallel} - δ_{\perp} plane.

Dominant systematics from flavour tagging.

Parameter	Value	Statistical	Systematic
		uncertainty	uncertainty
ϕ_s [rad]	-0.081	0.041	0.022
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	0.0607	0.0047	0.0043
$\Gamma_s [\mathrm{ps}^{-1}]$	0.6687	0.0015	0.0022
$ A_{\parallel}(0) ^2$	0.2213	0.0019	0.0023
$ A_0(0) ^2$	0.5131	0.0013	0.0038
$ A_{S}(0) ^{2}$	0.0321	0.0033	0.0046
$\delta_{\perp} - \delta_S$ [rad]	-0.25	0.05	0.04
	Solution (a)		
δ_{\perp} [rad]	3.12	0.11	0.06
δ_{\parallel} [rad]	3.35	0.05	0.09
	Solution (b)		
δ_{\perp} [rad]	2.91	0.11	0.06
δ_{\parallel} [rad]	2.94	0.05	0.09

Comparisons With Other Experiments

16

[HFLAV/PDG 2021]

The Rare Decay $B_s \rightarrow \mu^+\mu^-$

The Rare Decay $B_s \rightarrow \mu^+ \mu^-$

- FCNC decays are heavily suppressed in the SM.
 - Loop and/or box diagrams, and helicity suppression.
- Typical SM branching ratios, $Br \sim 10^{-9}$
 - Significant enhancements possible with NP.
- Aim to measure $Br(B_s \rightarrow \mu^+\mu^-)$ and $Br(B_d \rightarrow \mu^+\mu^-)$
 - Measure branching ratios relative to $B^{\pm} \rightarrow J/\psi~K^{\pm}$
 - Use $B_s \rightarrow J/\psi \phi$ as a control channel.
 - Extract yields from UML mass spectra.
- Significant overlap between B_d and B_s signals due to mass resolution.
 - Many interesting backgrounds...

Background Modelling

- Misreconstructed Backgrounds:
 - Same Side b \rightarrow c μ X \rightarrow s(d) μ X'
 - Same Vertex B $\rightarrow \mu^+\mu^-X$
 - Incorrect muon ID $B \rightarrow \mu hX$
- Peaking backgrounds:
 - Mostly $B \rightarrow hh$ with two incorrect muon IDs.
- Continuum background:
 - Combinatorics of random μμ, μh, and hh pairs.
 - Suppressed through a BDT.

BDTs and Signal Extraction

- BDTs trained to reject continuum background.
 - 15 BDT inputs Vertex, Muon, and Event.
 - Signal region is divided into 4 bins of constant signal efficiency.
 - Validated in reference and control channels.

ATLAS Results

Channel	SM	ATLAS 2015 + 2016	ATLAS Run1 + 2015 + 2016
$Br(B_s \rightarrow \mu^+\mu^-)$	$(3.66 \pm 0.14) \times 10^{-9}$	$(3.2^{+1.1}_{-1.0}) \times 10^{-9}$	$(2.8^{+0.8}_{-0.7}) \times 10^{-9}$
$Br(B_d \rightarrow \mu^+\mu^-)$	$(1.03 \pm 0.15) \times 10^{-10}$	$< 4.3 imes 10^{-10}$ @ 95% CL	$< 2.1 imes 10^{-10}$ @ 95% CL

• Event Count:

•
$$N_s = 80 \pm 22$$

$$N_d = -12 \pm 20$$

- Compatible with SM at 2.4σ
- Statistically limited.
 - Though significant systematic effects from the di-muon mass fitting methodology.

LHC Combinations

Future Prospects

HL-LHC Prospects for $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow \mu^+\mu^-$

Summary

- ATLAS is producing competitive results.
 - And actively collaborating with our LHC partners!
- $B_s \rightarrow J/\psi \phi$ remains a solid channel for NP searches.
 - But nothing interesting yet!
- ATLAS's $B_s \rightarrow \mu^+ \mu^-$ result is broadly consistent with SM predictions.
- All of these analyses are currently working toward full Run2 results.
- We are well prepared for Run3 data.

Backup

The ATLAS Detector

Flavour Tagging

Fit Models - $B_s \rightarrow J/\psi \phi$

$$\ln \mathcal{L} = \sum_{i=1}^{N} w_i \cdot \ln[f_s \cdot \mathcal{F}_s(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i}) \\ + f_s \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i}) \\ + f_s \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i}) \\ + (1 - f_s \cdot (1 + f_{B^0} + f_{\Lambda_b}))\mathcal{F}_{bkg}(m_i, t_i, \sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B|Q_x), p_{T_i})],$$

$$\mathcal{F}_{s}(m_{i}, t_{i}, \sigma_{m_{i}}, \sigma_{t_{i}}, \Omega_{i}, P_{i}(B|Q_{x}), p_{T_{i}})$$

= $P_{s}(m_{i}|\sigma_{m_{i}}) \cdot P_{s}(\sigma_{m_{i}}|p_{T_{i}}) \cdot P_{s}(t_{i}, \Omega_{i}|\sigma_{t_{i}}, P_{i}(B|Q_{x}))$
 $\cdot P_{s}(\sigma_{t_{i}}|p_{T_{i}}) \cdot P_{s}(P_{i}(B|Q_{x})) \cdot A(\Omega_{i}, p_{T_{i}}) \cdot P_{s}(p_{T_{i}}).$

Fit Projections - $B_s \rightarrow J/\psi \phi$

Fit Projections - $B_s \rightarrow J/\psi \phi$

Results - $B_s \rightarrow J/\psi \varphi$

Parameter	Value	Statistical	Systematic
		uncertainty	uncertainty
ϕ_s [rad]	-0.081	0.041	0.022
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	0.0607	0.0047	0.0043
$\Gamma_s [\mathrm{ps}^{-1}]$	0.6687	0.0015	0.0022
$ A_{\ }(0) ^2$	0.2213	0.0019	0.0023
$ A_0(0) ^2$	0.5131	0.0013	0.0038
$ A_{S}(0) ^{2}$	0.0321	0.0033	0.0046
$\delta_{\perp} - \delta_S$ [rad]	-0.25	0.05	0.04
	Solution (a)		
δ_{\perp} [rad]	3.12	0.11	0.06
δ_{\parallel} [rad]	3.35	0.05	0.09
	Solution (b)	-	
δ_{\perp} [rad]	2.91	0.11	0.06
δ_{\parallel} [rad]	2.94	0.05	0.09

Results - $B_s \rightarrow J/\psi \varphi$

	ΔΓ	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_S$
ϕ_s	-0.080	0.017	-0.003	-0.004	-0.007	0.007	0.004	-0.007
$\Delta\Gamma$	1	-0.586	0.090	0.095	0.051	0.032	0.005	0.020
Γ_s		1	-0.125	-0.045	0.080	-0.086	-0.023	0.015
$ A_{ }(0) ^2$			1	-0.341	-0.172	0.522	0.133	-0.052
$ A_0(0) ^2$				1	0.276	-0.103	-0.034	0.070
$ A_{S}(0) ^{2}$					1	-0.362	-0.118	0.244
δ_{\parallel}						1	0.254	-0.085
δ_{\perp}							1	0.001

φ

Systematics - $B_s \rightarrow J/\psi \phi$

	ϕ_s	$\Delta\Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
	$[10^{-3} \text{ rad}]$	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3} \text{ ps}^{-1}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3} \text{ rad}]$	$[10^{-3} \text{ rad}]$	[10 ⁻³ rad]
Tagging	19	0.4	0.3	0.2	0.2	1.1	17	19	2.3
ID alignment	0.8	0.2	0.5	< 0.1	< 0.1	< 0.1	11	7.2	< 0.1
Acceptance	0.5	0.3	< 0.1	1.0	0.9	2.9	37	64	8.6
Time efficiency	0.2	0.2	0.5	< 0.1	< 0.1	0.1	3.0	5.7	0.5
Best candidate selection	0.4	1.6	1.3	0.1	1.0	0.5	2.3	7.0	7.4
Background angles model:									
Choice of fit function	2.5	< 0.1	0.3	1.1	< 0.1	0.6	12	0.9	1.1
Choice of $p_{\rm T}$ bins	1.3	0.5	< 0.1	0.4	0.5	1.2	1.5	7.2	1.0
Choice of mass window	9.3	3.3	0.2	0.4	0.8	0.9	17	8.6	6.0
Choice of sidebands intervals	0.4	0.1	0.1	0.3	0.3	1.3	4.4	7.4	2.3
Dedicated backgrounds:									
B_d^0	2.6	1.1	< 0.1	0.2	3.1	1.5	10	23	2.1
Λ_b	1.6	0.3	0.2	0.5	1.2	1.8	14	30	0.8
Alternate Δm_s	1.0	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	15	4.0	< 0.1
Fit model:									
Time res. sig frac	1.4	1.1	0.5	0.5	0.6	0.8	12	30	0.4
Time res. $p_{\rm T}$ bins	0.7	0.5	0.8	0.1	0.1	0.1	2.2	14	0.7
S-wave phase	0.3	< 0.1	< 0.1	< 0.1	< 0.1	0.2	8.0	15	37
Fit bias	5.7	1.3	1.2	1.3	0.4	1.1	3.3	19	0.3
T- 4-1	22	4.2	2.2	2.2	2.0	1.0	5.5	0.0	20
Total	22	4.3	2.2	2.3	3.8	4.6	22	88	39

Branching Ratios - $B_s \rightarrow \mu^+ \mu^-$

$$\begin{aligned} \mathcal{B}(B_{(s)}^{0} \to \mu^{+} \mu^{-}) &= \frac{N_{d(s)}}{\varepsilon_{\mu^{+} \mu^{-}}} \times \left[\mathcal{B}(B^{+} \to J/\psi \, K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+} \mu^{-}) \right] \frac{\varepsilon_{J/\psi K^{+}}}{N_{J/\psi K^{+}}} \times \frac{f_{u}}{f_{d(s)}} \\ &= N_{d(s)} \frac{\mathcal{B}(B^{+} \to J/\psi \, K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+} \mu^{-})}{\mathcal{D}_{\text{ref}}} \times \frac{f_{u}}{f_{d(s)}} \,, \end{aligned}$$

$\mathsf{BDT} \operatorname{-} \mathsf{B}_{\mathsf{s}} \xrightarrow{} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

Variable	Description
p_{T}^{B}	Magnitude of the <i>B</i> candidate transverse momentum $\overrightarrow{p_{T}}^{B}$.
$\chi^2_{\rm PV,DV}$ xy	Compatibility of the separation $\overrightarrow{\Delta x}$ between production (i.e. associated PV) and decay (DV) vertices in the transverse projection: $\overrightarrow{\Delta x}_{T} \cdot \Sigma_{\overrightarrow{\Delta x}_{T}}^{-1} \cdot \overrightarrow{\Delta x}_{T}$, where $\Sigma_{\overrightarrow{\Delta x}_{T}}$ is the covariance matrix.
$\Delta R_{\mathrm{flight}}$	Three-dimensional angular distance between \overrightarrow{p}^B and $\overrightarrow{\Delta x}$: $\sqrt{\alpha_{2D}^2 + (\Delta \eta)^2}$
$ \alpha_{2D} $	Absolute value of the angle in the transverse plane between $\overrightarrow{p_T}^B$ and $\overrightarrow{\Delta x_T}$.
L_{xy}	Projection of $\overrightarrow{\Delta x_{T}}$ along the direction of $\overrightarrow{p}_{T}^{B}$: $(\overrightarrow{\Delta x_{T}}, \overrightarrow{p_{T}}^{B})/ \overrightarrow{p_{T}}^{B} $.
$\mathrm{IP}_B^{\mathrm{3D}}$	Three-dimensional impact parameter of the B candidate to the associated PV.
DOCA _{µµ}	Distance of closest approach (DOCA) of the two tracks forming the <i>B</i> candidate (three-dimensional).
$\Delta \phi_{\mu\mu}$	Azimuthal angle between the momenta of the two tracks forming the B candidate.
$ d_0 ^{\text{max}}$ -sig.	Significance of the larger absolute value of the impact parameters to the PV of the tracks forming the B candidate, in the transverse plane.
$ d_0 ^{\min}$ -sig.	Significance of the smaller absolute value of the impact parameters to the PV of the tracks forming the B candidate, in the transverse plane.
$P_{\rm L}^{\rm min}$	The smaller of the projected values of the muon momenta along $\overrightarrow{p_T}^B$.
<i>I</i> _{0.7}	Isolation variable defined as ratio of $ \overrightarrow{p_T}^B $ to the sum of $ \overrightarrow{p_T}^B $ and the transverse momenta of all additional tracks contained within a cone of size $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.7$ around the <i>B</i> direction. Only tracks matched to the same PV as the <i>B</i> candidate are included in the sum.
DOCA _{xtrk}	DOCA of the closest additional track to the decay vertex of the B candidate. Only tracks matched to the same PV as the B candidate are considered.
$N_{ m xtrk}^{ m close}$	Number of additional tracks compatible with the decay vertex (DV) of the <i>B</i> candidate with $\ln(\chi^2_{\text{xtrk,DV}}) < 1$. Only tracks matched to the same PV as the <i>B</i> candidate are considered.
$\chi^2_{\mu,\mathrm{xPV}}$	Minimum χ^2 for the compatibility of a muon in the <i>B</i> candidate with any PV reconstructed in the event.

BDT - $B_s \rightarrow \mu^+ \mu^-$

Systematics - $\mathrm{B_s} \xrightarrow{} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

Source	Contribution [%]		
Statistical	0.8	3	
BDT input variables	3.2	2	
Kaon tracking efficiency	1.5	5	
Muon trigger and reconstruction	1.0)	
Kinematic reweighting (DDW)	0.8	8	
Pile-up reweighting	0.6		
Source	B_{s}^{0} [%]	$B^0 [\%]$	
f_s/f_d	5.1	-	
B^+ yield	4.8	4.8	
R_{ε}	4.1	4.1	
$\mathcal{B}(B^+ \to J/\psi \ K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)$	2.9	2.9	
Fit systematic uncertainties	8.7	65	
Stat. uncertainty (from likelihood est.)	27	150	

$P_n' \text{ in } B_d \rightarrow K^* \mu^+ \mu^-$

- Tension with theory predictions in the angular observables:
 - See J. High Energ. Phys. 2016, 104 (2016).

