# Indirect searches for new physics and the global SMEFT likelihood

Peter Stangl AEC & ITP University of Bern



# Indirect searches for new physics

**Precision measurements** at **low energy** can indirectly probe scales far above the reach of direct searches



annotations from Admir Greljo @ ICHEP 2022

• Effective  $b \rightarrow s\ell\ell$  interaction in the Standard Model



$$\mathcal{H}_{eff}^{bs\ell\ell} \supset -\mathcal{N} \sum_{i} C_{i} O_{i}$$
  
 $\mathcal{N} = \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \frac{e^{2}}{16\pi^{2}} \approx (34 \text{ TeV})^{-2}$ 

• Effective  $b \rightarrow s\ell\ell$  interaction in the Standard Model



$$\begin{split} \mathcal{H}_{\text{eff}}^{bs\ell\ell} \supset -\mathcal{N} \, \sum_{i} \textit{C}_{i} \, \textit{O}_{i} \\ \mathcal{N} = \frac{4\textit{G}_{F}}{\sqrt{2}} \textit{V}_{tb} \textit{V}_{ts}^{*} \frac{e^{2}}{16\pi^{2}} \approx (34 \, \text{TeV})^{-2} \end{split}$$

• Effective  $b \rightarrow s\ell\ell$  interaction in the Standard Model



$$\mathcal{H}_{eff}^{bs\ell\ell} \supset -\mathcal{N} \sum_{i} C_{i} O_{i}$$
  
 $\mathcal{N} = \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \frac{e^{2}}{16\pi^{2}} \approx (34 \text{ TeV})^{-2}$ 

• Effective  $b \rightarrow s\ell\ell$  interaction in the Standard Model



$$\mathcal{H}_{eff}^{bs\ell\ell} \supset -\mathcal{N} \sum_{i} C_{i} O_{i}$$
  
 $\mathcal{N} = \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \frac{e^{2}}{16\pi^{2}} \approx (34 \text{ TeV})^{-2}$ 

• Effective  $b \rightarrow s\ell\ell$  interaction in the Standard Model



$$\begin{split} \mathcal{H}_{eff}^{bs\ell\ell} \supset -\mathcal{N} \, \sum_i C_i \, O_i \\ \mathcal{N} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \approx (34 \, \text{TeV})^{-2} \end{split}$$

• Effective  $b \rightarrow s\ell\ell$  interaction in the Standard Model



$$\mathcal{H}_{eff}^{bs\ell\ell} \supset -\mathcal{N} \sum_{i} C_{i} O_{i}$$
  
 $\mathcal{N} = \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \frac{e^{2}}{16\pi^{2}} \approx (34 \text{ TeV})^{-2}$ 

• Effective  $b \rightarrow s\ell\ell$  interaction in the Standard Model



$$\mathcal{H}_{eff}^{bs\ell\ell} \supset -\mathcal{N} \sum_{i} C_{i} O_{i}$$
  
 $\mathcal{N} = \frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \frac{e^{2}}{16\pi^{2}} \approx (34 \text{ TeV})^{-2}$ 

► Effective Hamiltonian at scale *m<sub>b</sub>*:

$$\begin{split} \mathcal{H}_{\text{eff}}^{bs\ell\ell} &= -\mathcal{N} \bigg( C_7^{bs} O_7^{bs} + C_7'^{bs} O_7'^{bs} + \sum_{\ell} \sum_{i=9,10,S,P} \bigg( C_i^{bs\ell\ell} O_i^{bs\ell\ell} + C_i'^{bs\ell\ell} O_i'^{bs\ell\ell} \bigg) \bigg) + \text{h.c.} \\ O_9^{(\prime)bs\ell\ell} &= (\bar{s}\gamma_{\mu} P_{L(R)} b) (\bar{\ell}\gamma^{\mu} \ell) \,, \qquad C_9^{SM} \approx -4.1 \\ O_{10}^{(\prime)bs\ell\ell} &= (\bar{s}\gamma_{\mu} P_{L(R)} b) (\bar{\ell}\gamma^{\mu} \gamma_5 \ell) \,, \qquad C_{10}^{SM} \approx +4.2 \\ O_7^{(\prime)bs} &= \frac{m_b}{e} (\bar{s}\sigma_{\mu\nu} P_{R(L)} b) F^{\mu\nu} \,, \qquad C_7^{SM} \approx -0.3 \\ O_S^{(\prime)bs\ell\ell} &= m_b (\bar{s}P_{R(L)} b) (\bar{\ell}\ell) \,, \\ O_P^{(\prime)bs\ell\ell} &= m_b (\bar{s}P_{R(L)} b) (\bar{\ell}\gamma_5 \ell) \,. \end{split}$$

The  $b \rightarrow s\ell\ell$  anomalies



LHCb: arXiv:2003.04831, arXiv:2012.13241, arXiv:1403.8044, arXiv:1506.08777, arXiv:1606.04731, arXiv:2105.14007, arXiv:1705.05802, arXiv:2103.11769, arXiv:2108.09283, arXiv:2108.09284 ATLAS: arXiv:1812.03017, CMS: arXiv:1910.12127, Altmannshofer, PS: arXiv:2103.13370

CIPANP 2022, Lake Buena Vista, August 30, 2022

### The $b \rightarrow c \ell \nu$ anomalies



HFLAV, hflav.web.cern.ch BaBar, arXiv:1205.5442, arXiv:1303.0571 LHCb, arXiv:1506.08614, arXiv:1708.08856 Belle, arXiv:1607.03233, arXiv:1607.07923, arXiv:1612.00529, arXiv:1904.08794

### EFT fits in weak effective theory (WET)

#### $O_{\mathsf{q}}^{bs\ell\ell} = (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell)$ $O_{10}^{bs\ell\ell} = (\bar{s}\gamma_{\mu}P_{I(B)}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$ LFU obs. & $B_s \rightarrow \mu \mu \ 1\sigma, 2\sigma$ flavio $b \rightarrow s \mu \mu \ 1 \sigma, \ 2 \sigma$ rare B decays $1\sigma$ , $2\sigma$ 1.5 1.0Joshu 10 0.5 0.0 -0.5-1.0-1.5-2.0-10-0.50.0 0.5 1.0 $C_0^{bs\mu\mu}$

 $b \rightarrow s\ell\ell$ 

#### $b \rightarrow c \ell \nu$ $O_{V_l} = (\bar{c}\gamma_{\mu}P_Lb)(\bar{\tau}\gamma^{\mu}P_L\nu_{\tau}),$ $O_{S_R} = (\bar{c} P_R b) (\bar{\tau} P_L \nu_\tau) \,,$ $O_{S_{l}} = (\bar{c}P_{L}b)(\bar{\tau}P_{L}\nu_{\tau}),$ $O_{T} = (\bar{c}\sigma_{\mu\nu}P_{L}b)(\bar{\tau}\sigma^{\mu\nu}P_{L}\nu_{\tau}).$ 0.9Min 1 0.60.3 $\square$ Min 1, w/ $F_L^{D^*}$ 0 Min 2 -0.3 $\square$ Min 2 , w/ $F_L^{D^*}$ -0.6Min 3 -0.9-1.2-1.5 $C_{V_L}$ $C_{S_R}$ $C_{S_L}$ $C_T$

#### Altmannshofer, PS, arXiv:2103.13370

#### Murgui, Peñuelas, Jung, Pich, arXiv:1904.09311

#### CIPANP 2022, Lake Buena Vista, August 30, 2022

For more details on  $b \rightarrow s\ell\ell$  fits, see talk by Marco Fedele

# Lessons learned from the Flavor Anomalies

# Model building - lessons learned

• Model explaining  $R_{D^{(*)}}$  using  $b_L \rightarrow c_L \tau_L \nu_{\tau L}$ 

$$b_L 
ightarrow c_L au_L 
u_{ au L} \xrightarrow{SU(2)_L} b_L 
ightarrow s_L 
u_{\mu L} 
u_{ au L}$$

Constrained by  $B \to K \nu \bar{\nu}$  searches

Buras, Girrbach-Noe, Niehoff, Straub, arXiv:1409.4557



Model explaining R<sub>D</sub>(\*) and R<sub>K</sub>(\*) using mostly 3rd gen. couplings Modifies LFU in *τ* and Z decays, strongly constrained

Feruglio, Paradisi, Pattori, arXiv:1705.00929



► Model explaining  $b \rightarrow s\mu\mu$  using  $tt\mu\mu$  interaction Modifies  $Z \rightarrow \mu\mu$ , constrained by LEP



Camargo-Molina, Celis, Faroughy, arXiv:1805.04917

### What one would have to do

► Compute **all relevant observables**  $\vec{\mathcal{O}}$  (flavour, EWPO, ...) in terms of Lagrangian parameters  $\vec{\xi}$ 

 $\mathcal{L}_{\mathsf{NP}}(\vec{\xi}) \to \vec{\mathcal{O}}(\vec{\xi})$ 

Take into account loop / RGE effects

$$\mathcal{L}_{\mathsf{NP}}(\vec{\xi}) \xrightarrow{\Lambda_{\mathsf{NP}} \to \Lambda_{\mathsf{IR}}} \vec{\mathcal{O}}(\vec{\xi})$$

Compare to experiment

$$\vec{\mathcal{O}}(\vec{\xi}) \rightarrow \underbrace{L_{\exp}(\vec{\mathcal{O}}(\vec{\xi}))}_{\text{Likelihood}}$$

Tedious to do this for each model...

# SMEFT approach

► Assuming A<sub>NP</sub> ≫ v, NP effects in flavour, EWPO, Higgs, top,... can be expressed in terms of Standard Model Effective Field Theory (SMEFT) Wilson coefficients

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{n>4} \sum_{i} \frac{\mathcal{C}_{i}}{\Lambda_{\mathsf{NP}}^{n-4}} \mathcal{O}_{i}$$

Buchmuller, Wyler, Nucl. Phys. B 268 (1986) 621 Grzadkowski, Iskrzynski, Misiak, Rosiek, arXiv:1008.4884

- Powerful tool to connect model-building to phenomenology without need to recompute hundreds of observables in each model
  - Model building and matching:

$$\mathcal{L}_{\mathsf{NP}}(\vec{\xi}) \to \vec{C}(\vec{\xi})$$
 @  $\Lambda_{\mathsf{NP}}$ 

Model-independent pheno:

$$\vec{C} \xrightarrow{\Lambda_{\mathsf{NP}} \to \Lambda_{\mathsf{IR}}} \vec{\mathcal{O}}(\vec{C}) \to L_{\mathsf{exp}}(\vec{\mathcal{O}}(\vec{C}))$$

SMEFT likelihood  $L_{exp}(\vec{C})$  can tremendously simplify analyses of NP models

# The global SMEFT likelihood

# The global SMEFT likelihood

Several likelihood functions have been considered in the context of EFT fits

$$\begin{split} L(\vec{C}) &= L_{\text{EW} + \text{Higgs}}(\vec{C}_{\text{EW} + \text{Higgs}}) \times \dots \\ L(\vec{C}) &= L_{\text{top physics}}(\vec{C}_{\text{top physics}}) \times \dots \\ L(\vec{C}) &= L_{B \text{ physics}}(\vec{C}_{B \text{ physics}}) \times \dots \\ L(\vec{C}) &= L_{\text{LFV}}(\vec{C}_{\text{LFV}}) \times \dots \\ cf. \text{ eg. Falkowski, Mimouni, arXiv:1511.07434} \\ \text{Falkowski, González-Alonso, Mimouni, arXiv:1706.03783} \\ \text{Ellis, Murphy, Sanz, You, arXiv:1803.03252} \\ \text{Biekötter, Corbert, Plehn, arXiv:1803.03252} \\ \text{Harthad et al., arXiv:1901.05965} \\ \text{Ellis, Madigan, Mimasu, Sanz, You, arXiv:2012.02779} \end{split}$$

But these likelihood functions should not be considered separately since RG (loop) effects mix different sectors and UV models match to several sectors

#### We need to consider the global SMEFT likelihood

# Basis for implementation

- Computing hundreds of relevant flavour observables properly accounting for theory uncertainties
  - flavio https://flav-io.github.io

Straub. arXiv:1810.08132

- Already used in O(100) papers since 2016
- Representing and exchanging thousands of Wilson coefficient values, different EFTs, possibly different bases

Wilson coefficient exchange format (WCxf) https://wcxf.github.io/

Aebischer et al., arXiv:1712.05298

RG evolution above and below the EW scale, matching from SMEFT to the weak effective theory (WET)



wilson https://wilson-eft.github.io Aebischer, Kumar, Straub, arXiv:1804.05033

> SMEFT RGE: Alonso, Jenkins, Manohar, Trott, arXiv:1308.2627, arXiv:1310.4838, arXiv:1312.2014 (ported from DsixTools: Celis, Fuentes-Martin, Vicente, Virto, arXiv:1704.04504) SMEFT→ WET matching: Jenkins, Manohar, Stoffer, arXiv:1709.04486 WET RGE: Jenkins, Manohar, Stoffer, arXiv:1711.05270

based on

# Implementing the global SMEFT likelihood

Based on these tools, we have started building the SMEFT LikeLIhood

smelli https://github.com/smelli/smelli

► 
$$L(\vec{C}) \approx \prod_i L^i_{exp}(\vec{O}_{th}(\vec{C}, \vec{\theta}_0)) \times \tilde{L}_{exp}(\vec{O}_{th}(\vec{C}, \vec{\theta}_0))$$

where

- ► *C* WET or SMEFT Wilson coefficients
- $\vec{\theta_0}$  fixed nuisance parameters
- $\vec{O}_{\text{th}}(\vec{C}, \vec{\theta}_0)$  observable predictions
- ►  $L_{exp}^i(\vec{O})$  experimental likelihood from measurement *i* for observables  $\vec{O}$
- $\tilde{L}_{exp}(\vec{O})$  modified exp. likelihood:  $-2 \ln \tilde{L}_{exp}(\vec{O}) = \vec{D}^T (\Sigma_{exp} + \Sigma_{th})^{-1} \vec{D}$ , with  $\vec{D} = \vec{O} - \vec{O}_{exp}$  and covariance matrices  $\Sigma_{exp,th}$  (Gaussian approx.)

 $\begin{array}{c}
\dot{C}_{\text{SMEFT}}(\Lambda_{\text{NP}}) \\
\downarrow \\
\vec{C}_{\text{SMEFT}}(\mu_{h}) \longrightarrow \text{EWPO} \\
\downarrow \\
\vec{C}_{\text{WET}}(\mu_{l}) \longrightarrow \text{LFV} \\
\end{array}$ 

MDM

Aebischer, Kumar, PS, Straub, arXiv:1810.07698

### smelli v1.1.1: Flavor + EWPT



smelli v2.0: Higgs and beta decays,  $K \to \pi \ell \nu$ ,  $e^+e^- \to W^+W^-$ 

#### New observables

- **Higgs physics**: signal strengths for various decay ( $h \rightarrow \gamma\gamma, Z\gamma, ZZ, WW, bb, cc, \tau\tau, \mu\mu$ ) and production (*gg*, VBF, *Zh*, *Wh*, *t*th) channels Falkowski, Straub, arXiv:1911.07866
- Beta decays: lifetime and correlation coefficients of neutron beta decay, superallowed nuclear beta decays Gonzalez-Alonso, Naviliat-Cuncic, Severijns, arXiv:1803.08732
- $K \to \pi \ell \nu$ : total branching ratios of  $K^+ \to \pi^0 \ell^+ \nu$ ,  $K_{L,S} \to \pi^\pm \ell^\mp \nu$  ( $\ell = e, \mu$ ), and  $K^+ \to \pi^0 \mu^+ \nu$  effective scalar form factor In C and tensor coupling  $R_T$
- ▶  $e^+e^- \rightarrow W^+W^-$ : total and differential cross sections for  $e^+e^- \rightarrow W^+W^-$  pair production measured in LEP-2
- Proper treatment of the CKM matrix in SMEFT

based on Descotes-Genon, Falkowski, Fedele, González-Alonso, Virto, arXiv:1812.08163

- CKM input scheme using 4 observables to fix 4 CKM parameters:
  - $R_{K\pi} = \Gamma(K^+ \to \mu^+ \nu) / \Gamma(\pi^+ \to \mu^+ \nu)$  (mostly fixing  $V_{us}$ )
  - $BR(B^+ \rightarrow \tau \nu)$  (fixing  $V_{ub}$ )
  - ►  $BR(B \rightarrow X_c e\nu)$  (fixing  $V_{cb}$ )
  - $\Delta M_d / \Delta M_s$  (mostly fixing CKM phase  $\delta$ )
- Determine effective CKM matrix in presence of SMEFT operators

# New developments related to smelli

• New numerical methods developed for  $b \rightarrow s\ell^+\ell^-$  analyses

Altmannshofer, PS, arXiv:2103.13370

- numerical efficient implementation of NP dependence of theory covariance matrix
- computational speed increased by orders of magnitude through numerical improvements (O(s) → O(ms) per parameter point)

 $\rightarrow$  makes smelli suitable for parameter scans of NP models and EFT fits with many parameters

- will be implemented for all observables in smelli
- ▶ Neutral and charged current **Drell-Yan tails** ( $pp \rightarrow \ell^+ \ell^-, pp \rightarrow \ell \nu$  for  $\ell = e, \mu$ )

Greljo, Šalko, Smolkovič, PS, work in progress

- sensitivity to all semi-leptonic four-fermion operators with all quark flavor combinations of u, d, s, c, b (from parton distributions)
- complimentary to flavor physics constraints
- will be implemented in smelli

# Applications of smelli

# Bottom-Up approach: EFT fits



Altmannshofer, PS, arXiv:2103.13370

Falkowski, Straub, arXiv:1911.07866

# Top-Down approach: Analyses of NP models



#### Greljo, PS, Thomsen, arXiv:2103.13991 (matching: Gherardi, Marzocca, Venturini, arXiv:2003.12525)

Allanach, Camargo-Molina, Davighi, arXiv:2103.12056

2.0

# Conclusion

# Conclusions

- Lessons learned from Flavor Anomalies
  - Models that explain anomalies generically predict effects in other observables
  - Important to consider numerous indirect bounds and loop effects
- Python package smelli based on flavio implements a Global SMEFT likelihood currenlty containing
  - FCNC flavor observables ( $b \rightarrow s, b \rightarrow d, s \rightarrow d$ , and meson mixing)
  - ▶ FCCC flavor observables ( $b \rightarrow c, b \rightarrow u, s \rightarrow u, d \rightarrow u$ )
  - LFV observables ( $\mu$ ,  $\tau$ , Z, B-meson, and Kaon decays)
  - ► EWPT (W and Z pole observables, τ decays, (g 2)<sub>e,µ,τ</sub>)
  - Higgs physics (signal strengths)
  - Beta decays (neutron and superallowed nuclear beta decays)
- smelli will be extended soon
  - New numerical methods to improve accuracy and computational speed
  - Implementation of Drell-Yan tails
- Truly global likelihood is work in progress
  - Open-source development (contributions welcome!) https://github.com/smelli/smelli https://github.com/flav-io/flavio

# **Backup slides**

- Prerequisite: working installtion of Python version 3.7 or above
- Installation from the command line:

python3 -m pip install smelli --user

- downloads smelli with all dependencies from Python package archive (PyPI)
- installs it in user's home directory (no need to be root)

#### As any Python package, smelli can be used

- as library imported from other scripts
- directly in the command line interpreter
- in an interactive session
  - $\rightarrow$  we recommend the Jupyter notebook



| 🤗 smelli    | × +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|--|
| €)→ ୯ @     | Intersection (Intersection) (Inte | ··· 🖾 🗘           | ± » ≡      |  |
| Ċ jupyter   | smelli (autosaved)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | Logout     |  |
| File Edit ( | View Insert Cell Kernel Widgets Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trusted           | Python 3 C |  |
| B + × Ø     | 🚯 🛧 🕹 M Run 🔳 C 🏶 Code 📑 📼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |            |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |            |  |
|             | smelli playground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |            |  |
|             | This Jupyter notebook allows you to try out the smell1. Python package. Note that the<br>execution speed is limited. To make full use of the package, install it locally with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |            |  |
|             | pip3 installuser smelli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |            |  |
|             | Execute the cells of this notebook with shift + enter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |            |  |
| In [1]:     | from playground import *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |            |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |            |  |
|             | Step 1: EFT and basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |            |  |
|             | Execute this cell and select an EFT and basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |            |  |
| M = In []:  | <pre>widgets.HBox([widget_eft, widget_basis]) </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |            |  |
|             | Stap 2: likelihaad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |            |  |
|             | step 2. Interinood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |            |  |
|             | execute this cer to mitalize the mellitood. This will only take a monit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onc.              |            |  |
| In [ ]:     | <pre>gl = smelli.GlobalLikelihood(eft=select_eft.value, bas;</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | is=select_bas     | is.value)  |  |
|             | Step 3: Wilson coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |            |  |
|             | select a point in EFT parameter space by entering in the text field W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Alson coefficient | values in  |  |
|             | the form name: value , one coefficient per line (this format is called YAML). The allowed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |            |  |
|             | Formula to the CMEET Measure locato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |  |
|             | lol 2223: 1e-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |            |  |
|             | lq1_3323: 1e-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |            |  |
|             | lq3_3323: 1e-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |            |  |
| In [ ]:     | widgets.VBox([out_basispdf, widgets.HBox([ta_wc, t_sca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | le])])            |            |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |            |  |
|             | Step 4: parameter point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |            |  |
|             | execute this cell to initialize the GlobalLikelihoodPoint object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |            |  |

Step 1:

Import package and initalize GlobalLikelihood class

```
import smelli
gl = smelli.GlobalLikelihood()
```

possible arguments are

- eft='WET' to use Wilson coefficients in weak effective theory (no EWPOs)
   (default: eft='SMEFT')
- basis='...' to select different WCxf basis (default: basis='Warsaw' for SMEFT, basis='flavio' for WET)

Step 2:

Select point in Wilson coefficient space using parameter\_point method

- Three possible input formats:
  - Python dictionary with Wilson coefficient name/value pair and input scale

```
glp = gl.parameter_point({'lq1_2223': 1e-8}, scale=1000)
```

fixes Wilson coefficient  $[C_{lg}^{(1)}]_{2223}$  to  $10^{-8}$  GeV<sup>-2</sup> at scale 1 TeV

WCxf data file in YAML or JSON format (specified by file path)

```
glp = gl.parameter_point('my_wc.yaml')
```

instance of class wilson.Wilson from wilson package

```
glp = gl.parameter_point(wilson_instance)
```

Step 3:

Get results from GlobalLikelihoodPoint instance glp defined in step 2

The most important methods are:

```
glp.log_likelihood_global()
```

returns 
$$\Delta \log L = \log \left( \frac{L_{\text{global}}(\vec{C})}{L_{\text{global}}^{\text{SM}}} \right)$$

1 glp.log\_likelihood\_dict()
2

returns Python dictionary with contributions to  $\Delta \log L$  from different sets of observables (EWPOs, charged current LFU, neutral current LFU,...)

glp.obstable()

returns table listing individual observables with their experimental and theoretical central values and uncertainties

```
1 glp = gl.parameter_point({}, scale=1000)
2 glp.obstable(min_pull='2.35')
3
```

#### returns observables with highest pull in Standard Model (no Wilson coefficient set)

| Observable                                                                                            | Prediction                                              | Measurement                                               | Pull                |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|---------------------|
| $\left(\frac{d\overline{BR}}{dq^2}\right)(B_s \rightarrow \phi \mu^+ \mu^-)^{[1.0,6.0]}$              | $(5.37\pm 0.65)\times 10^{-8}~\tfrac{1}{\text{GeV}^2}$  | $(2.57 \pm 0.37) 	imes 10^{-8} \ rac{1}{\text{GeV}^2}$   | 3.8 <i>o</i>        |
| a <sub>µ</sub>                                                                                        | $(1.1659182\pm0.0000004)\times10^{-3}$                  | $(1.1659209\pm0.0000006)\times10^{-3}$                    | $3.5\sigma$         |
| $\langle P_5' \rangle (B^0 \to K^{*0} \mu^+ \mu^-)^{[4,6]}$                                           | $-0.756 \pm 0.074$                                      | $-0.21\pm0.15$                                            | $3.3\sigma$         |
| $R_{\tau\ell}(B \to D^* \ell^+ \nu)$                                                                  | 0.248                                                   | $0.306\pm0.018$                                           | $3.3\sigma$         |
| $\langle A_{FB}^{\ell h} \rangle (\Lambda_b \rightarrow \Lambda \mu^+ \mu^-)^{[15,20]}$               | $0.1400 \pm 0.0075$                                     | $0.250\pm0.041$                                           | <b>2.6</b> $\sigma$ |
| $\langle R_{\mu e} \rangle (B^{\pm} \rightarrow K^{\pm} \ell^+ \ell^-)^{[1.0,6.0]}$                   | 1.000                                                   | $0.745\pm0.098$                                           | <b>2.6</b> $\sigma$ |
| $\epsilon'/\epsilon$                                                                                  | $(-0.3\pm 6.0)\times 10^{-4}$                           | $(1.66\pm 0.23)\times 10^{-3}$                            | <b>2.6</b> $\sigma$ |
| $BR(W^{\pm} \rightarrow \tau^{\pm} \nu)$                                                              | 0.1084                                                  | $0.1138 \pm 0.0021$                                       | <b>2.6</b> $\sigma$ |
| $\langle R_{\mu e} \rangle (B^0 \to K^{*0} \ell^+ \ell^-)^{[1.1, 6.0]}$                               | 1.00                                                    | $\textbf{0.68} \pm \textbf{0.12}$                         | $2.5\sigma$         |
| $R_{	au\ell}(B 	o D\ell^+  u)$                                                                        | 0.281                                                   | $0.406\pm0.050$                                           | $2.5\sigma$         |
| $\left\langle \frac{dBR}{da^2} \right\rangle (B^{\pm} \rightarrow K^{\pm} \mu^+ \mu^-)^{[15.0,22.0]}$ | $(1.56 \pm 0.12) \times 10^{-8} \frac{1}{\text{GeV}^2}$ | $(1.210 \pm 0.072) \times 10^{-8} \frac{1}{\text{GeV}^2}$ | $2.5\sigma$         |
| A <sup>0,b</sup> <sub>FB</sub>                                                                        | $10.31 \times 10^{-2}$                                  | $(9.92 \pm 0.16) 	imes 10^{-2}$                           | $2.4\sigma$         |
| $\langle \frac{dBR}{dg^2} \rangle (B^0 \to K^0 \mu^+ \mu^-)^{[15.0,22.0]}$                            | $(1.44 \pm 0.11) 	imes 10^{-8} \ rac{1}{ m GeV^2}$     | $(9.6 \pm 1.6) \times 10^{-9} \ \frac{1}{\text{GeV}^2}$   | $2.4\sigma$         |
| $\langle R_{\mu e} \rangle (B^0 \to K^{*0} \ell^+ \ell^-)^{[0.045, 1.1]}$                             | 0.93                                                    | 0.65±0.12                                                 | $2.4\sigma$         |