14th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2022)

Search for dark matter with visible signatures

Thomas Klijnsma

On behalf of the CMS Collaboration

3 September 2022

Universität Zürich[™]

ETH zürich

Fermilab

About dark sectors

- What if dark matter is not a single particle?
 - Dark sector models more complex, but then again, so is ordinary matter
 - Alternative to WIMPs, detectable signatures
 - Signature may be hiding in already-taken data
 - This talk: Semi-visible jets [1503.00009] (one of the many signatures)
 - CMS search accepted for publication: [CMS-EXO-19-020]

Semi-visible jets in a nutshell

Semi-visible jets in a nutshell

Semi-visible jets in a nutshell

8

‡ Fermilab

- Complete model parametrization can have many parameters
 - Some of these based on nonperturbative physics

- Focus instead on **X** dark 'effective' **M**dark **parameters** that **r**inv Х have direct impact $m_{Z'}$ on jet observables 7' Can be 0..1 depending and MET on details of the model $\sigma_{Z'}$ Only affects overall rate
- Dark hadrons decay promptly (no long lifetimes), dark QCD ($\Lambda_{dark} \ll m_{Z'}$), and no leptons in the dark hadron decays
 - Some alternative experimental signatures could be realized altering these details (displacement, leptons)

• **Dominant**; MET from misreconstruction

- MET from v, missed lepton
- Not so likely to mimic SVJ but high σ

 Mimics SVJ if lepton is missed

 Least likely to have MET aligned with jet, but still noticeable background

Dominant; MET from misreconstruction

- Veto leptons
- Require Δφ_{min} < threshold
- Other less significant cuts

 Mimics SVJ if lepton is missed

 Least likely to have MET aligned with jet, but still noticeable background Δφ_{min} = min(Δφ(j₁, MET), Δφ(j₂, MET))

‡ Fermilab 12

ECAL dead cell

- Mostly instrumental MET, i.e. failure to reconstruct the whole jet
 - Example: ECAL dead cells
 - Custom filter put in place to reject an additional 40% QCD

ECAL dead cell

- Mostly instrumental MET, i.e. failure to reconstruct the whole jet
 - Example: ECAL dead cells
 - Custom filter put in place to reject an additional 40% QCD
- Main QCD rejection: require RT = MET/MT > threshold
 - Good QCD rejection without sculpting M_T distribution

ECAL dead cell

- Mostly instrumental MET, i.e. failure to reconstruct the whole jet

- Example: ECAL dead cells
- Custom filter put in place to reject an additional 40% QCD
- Main QCD rejection: require RT = MET/MT > threshold
 - Good QCD rejection without sculpting M_T distribution
- Further reduction via a **BDT** based on jet variables
 - Model dependent!
 - Perform final fits without BDT too; weaker limits, but no model dependence

Phenomenology of SVJs

Semi-visible jet searches not covered by current searches

Search strategy: Bump hunt

- High-mass Z' (m_{Z'} > ~1000 GeV) leads to a **resonance** in the mass spectrum
- Searching in M_T(JJ, MET):

$$M_{\rm T}^2 = \left(\mathrm{MET} + \sqrt{p_{\rm T,\,dijet}^2 + m_{\rm dijet}^2}\right)^2 - (\mathrm{MET}_x + p_{x,\,\mathrm{dijet}})^2 - (\mathrm{MET}_y + p_{y,\,\mathrm{dijet}})^2$$

- Kinematic edge @ m_{Z'}
- Better resolution than m_{JJ}
- SM backgrounds smoothly falling

Signal regions

Low and high 'purity' regions are constructed to enhance sensitivity:
 High: RT > .25

57%

tt

QCD

arXiv:2112.1112

W(lv)+jets

Z+i

19%

12%

- Kinematic edge somewhat degraded in low purity region
- Pronounced effect of r_{inv} on M_T spectrum

arXiv:2112.1

3% 5%

4%

QCD tī W(lv)+jets

88%

 $R_T = MET/M_T$

Background estimation relies on fit to data

Limits in (mz', rinv)-plane

No BDT

With **BDT**

Other dark QCD analyses in the pipeline

Boosted SVJs

CMS

What if $m_{Z'}$ is low and the Z' system is boosted?

t-channel

Alternative production modes

Emerging jets

What if the dark hadrons have a non-negligible lifetime?

Published: [JHEP 02 (2019) 179]

Soft unclustered energy patterns (SUEPs)

Large 't Hooft coupling causing a spherical spray

‡ Fermilab

22

- Dark sector models can have interesting new signatures in particle detectors
 - These signatures may be hiding in already taken data
- Presented a search for semivisible jets in the CMS detector
 - First direct search for strongly-coupled composite dark matter at colliders
 - Both model independent and model specific results
- Many other interesting signatures possible stay tuned!

Back up

Fermilab

2D exclusion limits vs. m_{dark}

- Trigger on jet p_T , H_T
 - Require low $\Delta \eta(J_1, J_2)$ for high efficiency
- Usually improves signal sensitivity
 - Most t-channel QCD events already rejected by R_T requirement
- M_T>1500 GeV for trigger efficiency

- Avoid/minimize direct cuts on M_T ingredients: p_T^{miss}, jet p_T
 - Relative variable ('transverse ratio') $R_T = p_T^{miss}/M_T$
 - Reject QCD background without shifting M_T peak

- Signal:
 - Experimental: (uncorrelated between years of data-taking)
 - Luminosity, trigger efficiency, jet energy corrections (up to 12%), jet energy resolution, pileup, statistical uncertainties in simulated samples
 - Theoretical: (correlated between years of data-taking)
 - PDFs, renormalization/factorization scale, parton shower modeling (ISR/FSR), jet energy scale/composition (up to 21%)
- Background:
 - Fit parameters: freely floating, uncertainties arise from statistical uncertainty in data
 - Fit normalizations: also freely floating, can change by up to 10%
 → most impactful uncertainty

Event selection

Selection	QCD	tī	W+jets	Z+jets	signal
$p_{\rm T}(J_{1,2}) > 200 {\rm GeV}, \eta(J_{1,2}) < 2.4$	1.2 ± 0.0	6.4 ± 0.0	2.0 ± 0.0	1.3 ± 0.0	83.0 ± 0.1
$R_{\rm T} > 0.15$	1.3 ± 0.0	12.1 ± 0.0	18.5 ± 0.0	34.6 ± 0.0	39.7 ± 0.2
$\Delta \eta(J_1, J_2) < 1.5$	94.9 ± 0.0	88.0 ± 0.0	85.1 ± 0.0	78.8 ± 0.0	79.7 ± 0.2
$M_{\rm T} > 1500 {\rm GeV}$	0.2 ± 0.0	3.1 ± 0.0	4.0 ± 0.0	5.6 ± 0.0	80.9 ± 0.2
$N_{\mu} = 0$	93.0 ± 1.8	62.0 ± 0.1	66.0 ± 0.0	99.5 ± 0.0	96.0 ± 0.1
$N'_{\mathbf{e}} = 0$	99.6 ± 0.0	59.8 ± 0.1	57.3 ± 0.1	99.6 ± 0.0	99.4 ± 0.1
p_{T}^{miss} filters	99.5 ± 0.0	99.9 ± 0.0	99.9 ± 0.0	99.9 ± 0.0	100.0 ± 0.0
$\Delta R(j_{1,2}, c_{\text{dead}})^2 > 0.01$	60.6 ± 0.3	95.1 ± 0.2	95.2 ± 0.0	95.6 ± 0.0	94.3 ± 0.2
veto $f_{\gamma}(j_1) > 0.7 \& p_{T}(j_1) > 1000 \text{GeV}$	99.7 ± 0.0	99.7 ± 0.0	99.6 ± 0.0	99.7 ± 0.0	100.0 ± 0.0
$\Delta \phi_{ m min} < 0.8$	94.8 ± 0.1	81.7 ± 0.1	61.8 ± 0.1	44.7 ± 0.1	87.7 ± 0.2
Efficiency [%]	1.6e-05	0.006	0.0029	0.0085	17
high-R _T	9.0 ± 0.1	29.5 ± 0.2	38.8 ± 0.1	39.1 ± 0.1	45.0 ± 0.4
low- R_{T}	91.0 ± 0.1	70.5 ± 0.2	61.2 ± 0.1	60.9 ± 0.1	54.7 ± 0.4
high-SVJ2	0.1 ± 0.0	0.6 ± 0.0	0.5 ± 0.0	0.7 ± 0.0	34.9 ± 0.4
low-SVJ2	1.1 ± 0.0	1.7 ± 0.2	0.9 ± 0.0	0.9 ± 0.0	43.2 ± 0.4

$${}_{v}e_{n}^{(\beta)} = \sum_{1 \le i_{1} < i_{2} < \dots < i_{n} \le n_{J}} z_{i_{1}}z_{i_{2}}\dots z_{i_{n}} \prod_{m=1}^{v} \min_{s < t \in \{i_{1},i_{2},\dots,i_{n}\}} \left\{ \theta_{st}^{\beta} \right\}$$

$$N_{2} = \frac{2e_{3}^{(\beta)}}{(1e_{2}^{(\beta)})^{2}}$$
$$C_{2}^{(\beta)} = \frac{e_{3}^{(\beta)}}{(e_{2}^{(\beta)})^{2}}$$
$$D_{2}^{(\alpha,\beta)} = \frac{3e_{3}^{(\alpha)}}{(1e_{2}^{(\beta)})^{3\alpha/\beta}}$$
$$M_{2}^{(\beta)} = \frac{1e_{3}^{(\beta)}}{1e_{2}^{(\beta)}}$$

def e(particles: Particles, v, n, beta=1.): '''Raw "e" function from Angles paper''' s = 0. if *n*==0: return 1. if len(particles) < n: return 0.</pre> ptsum = particles.pt.sum() for combination in particle_combinations(particles, n): z_product = (combination.pt / ptsum).prod() thetas = r(*particle_combinations_columns(combination, 2)) thetas.sort() theta_product = thetas[:v].prod() s += z_product * (theta_product**beta) return s def N_series(particles, i, beta=1.): try: return e(particles, 2, i+1) / (e(particles, 1, i)**2) except ZeroDivisionError: return -1.

Fermilab

31

- Some standard filters for instrumental MET
 - Not tuned for low $\Delta \phi(j, MET)$ region
- Large source: Broken cells in the electromagnetic calorimeter
 - Custom filter put in place to reject an additional 40% QCD
- Main work horse: require R_T = MET/M_T > threshold
 - Good QCD rejection without sculpting $M_{\rm T}$ distribution
- Further reduction via a **BDT** trained on jet variables
 - Model dependent!
 - Perform final fits without BDT too; weaker limits, but no model dependence

Variable definitions

- Girth: $g = \sum_{i} \frac{p_{\mathrm{T},i}}{p_{\mathrm{T},\mathrm{jet}}} r_i$
- Major/minor axes:

$$\mathcal{M} = \begin{bmatrix} \sum_{i} p_{T,i}^{2} \Delta \eta_{i}^{2} & -\sum_{i} p_{T,i}^{2} \Delta \eta_{i} \Delta \phi_{i} \\ \sum_{i} p_{T,i}^{2} \Delta \phi_{i}^{2} \end{bmatrix}$$

$$\sigma_{\text{major}} = \sqrt{\lambda_{1} / \sum_{i} p_{T,i}^{2}}$$

$$\sigma_{\text{minor}} = \sqrt{\lambda_{2} / \sum_{i} p_{T,i}^{2}}$$

$$\mathbf{M} = \frac{\sqrt{\sum_{i} p_{T,i}^{2}}}{\sum_{i} p_{T,i}}$$

$$\mathbf{M} = \frac{\sqrt{\sum_{i} p_{T,i}^{2}}}{\sum_{i} p_{T,k}} \min\{\Delta R_{1,k}^{(\beta)}, \Delta R_{2,k}^{(\beta)}, \dots, \Delta R_{N,k}^{(\beta)}\}$$

$$M_{\rm T}^2 = \left[E_{{\rm T},JJ} + E_{\rm T}^{\rm miss} \right]^2 - \left[\vec{p}_{{\rm T},JJ} + \vec{p}_{\rm T}^{\rm miss} \right]^2 = M_{JJ}^2 + 2p_{\rm T}^{\rm miss} \left(\sqrt{M_{JJ}^2 + p_{{\rm T},JJ}^2} - p_{{\rm T},JJ} \cos(\phi_{JJ,{\rm miss}}) \right)$$

Tagging semi-visible jets

 Using a Boosted Decision Tree based on 15 jet-specific variables discriminate between SVJs and SM jets:

Heavy object ID	Quark vs. gluon	Flavor tagging	Other
N-subjettiness τ ₁₂ , τ ₃₂	Jet girth	Jet energy fractions:	
Energy correlation fns N ₂ ¹ , N ₃ ¹	Axis minor/major	fcharged hadron, fneutral hadron,	Δφ(j, MET)
Soft drop mass m _{SD}	p⊤ dispersion	f _{electron} , f _{muon} , f _{photon}	

 No variable strongly discriminating by itself

CMS

- Trained on various signal model parameter variations
- Working point of score > .55
 - Reject 84-88% of background jets
 - Keep 87% of signal jets
 - AUC of .946 w.r.t. QCD
- Two leading jets must be tagged

🛟 Fermilab

34

