Collectivity of Quarkonium in PbPb with CMS

Dong Ho Moon On behalf of the CMS collaboration Chonnam National University

2022/09/02 CIPANP 2022 @ Orlando Florida

Quark-Gluon-Plasma (QGP)

• QCD phase diagram

T_c (Critical temperature) : 150~200 MeV(Lattice QCD)

What is Quark-Gluon-Plasma?

- A phase of Quantum Chromodynamics (QCD)
- Consist of asymptotically free quarks and gluons
- Exist at extremely high temperature and density
- Live in only a few milliseconds after Big Bang

Exploring QGP means exploring our early universe CIPANP 2022 @ Orlando Florida, 2022/09/02, Dong Ho Moon 2

Quarkonia in Heavy ion Collisions

- Quarkonia : Excellent Probe for the Quark-Gluon-Plasma
 - Massive and early production by hard scattering
 - pQCD can estimate production rate
 - $\tau_{\text{formation}}(q\bar{q}) \le \tau_{\text{formation}}(QGP) < \tau_{\text{life time}}(QGP) < \tau_{\text{decay time}}(q\bar{q})$ \implies expected to experience whole QGP evolution

CMS Detector

CIPANP 2022 @ Orlando Florida, 2022/09/02,

 \mathbf{C}

J/\u03c6 in Heavy ion Collisions

PLB 805 (2020) 13434, EPJC 78 (2018)509, PRC 84 (2011) 054912. PLB 797 (2019) 134917. JHEP 05 (2016) 179

- Suppression PLB 178 (1986) 416, JHEP 0703 (2007) 0541, PRD 78 (2008) 014017, IJMP E 24 (1015) 1530008
 - Color screening (sequential melting), landau-damping, gluo-dissociation, cold nuclear matter effects (nPDF, comover breakup, absorption etc..)
- Enhancement PLB 490 (2000) 196, NPA 789 (2007) 334
 - Statistical recombination : uncorrelated and correlated quark pairs

J/\u03c6 in Heavy ion Collisions

PLB 805 (2020) 13434, EPJC 78 (2018)509, PRC 84 (2011) 054912, PLB 797 (2019) 134917, JHEP 05 (2016) 179

- Suppression PLB 178 (1986) 416, JHEP 0703 (2007) 0541, PRD 78 (2008) 014017, IJMP E 24 (1015) 1530008
 - Color screening (sequential melting), landau-damping, gluo-dissociation, cold nuclear matter effects (nPDF, comover breakup, absorption etc..)
- Enhancement PLB 490 (2000) 196, NPA 789 (2007) 334
 - Statistical recombination : uncorrelated and correlated quark pairs

J/\u03c6 in Heavy ion Collisions

PLB 805 (2020) 13434, EPJC 78 (2018)509, PRC 84 (2011) 054912, PLB 797 (2019) 134917, JHEP 05 (2016) 179

- Suppression PLB 178 (1986) 416, JHEP 0703 (2007) 0541, PRD 78 (2008) 014017, IJMP E 24 (1015) 1530008
 Color screening (sequential melting) landau-damping aluo-dissociation, co Final observed results are the mixture of all those effects. .)
- Enhance Not simple to distinguish suppression and recombination.

CN

Statistical recombination : uncorrelated and correlated quark pairs

J/ψ flows

- But significant elliptic flow (v₂) may be expected at LHC energy due to the significant contribution of regenerated J/ψ
 - ✓ Good recombination signal

8

J/ψ flows

- Almost zero flow at RHIC
- But significant elliptic flow (v₂) may be expected at LHC energy due to the significant contribution of regenerated J/ψ

✓ Good recombination signal

Triangular flow (v₃) : initial geometry fluctuation

J/w Elliptic flow in PbPb

- ALICE inclusive $J/\psi v_2$ is similar with open charm flow ($p_T > 5 \text{ GeV/c}$)
 - Compatible with the results of ATLAS and CMS (2.76 TeV) ($p_T > 7$ GeV/c)
- ATLAS measured prompt and non-prompt J/ ψ 's flow at 5.02 TeV
 - Prompt J/ ψ 's flow is larger than that of non-prompt J/ ψ
- CMS Υ v₂ is consistent with zero within uncertainties.
- CMS prompt and nonprompt J/ψ can be a good bridge between ALICE and ATLAS >> useful to probe c vs b quark flow.

Focus on charmonium flow

Charmonia in PbPb

Signal Extractions

J/ψ : 2D fit on mass & decay length

- 2 dimensional simultaneous fit to separate prompt and nonprompt J/ψ
- Two CrystalBall (Signal) + nth order polynomials (Background)

Scalar Product Method

- Scalar product method using Q-vectors
 - Qn : Dimuon flow vector
 - QnA (QnB) : Event plane vector for the HF \pm
 - AnC : Event plane vector in the tracker for $|\eta| < 0.75$

Slice v_n bin with 0.3 >> apply 2D fit >> Can separate prompt and nonprompt J/ ψ Mean (average) value of each J/ ψ distribution = v_n

Results : J/w Elliptic flow

CMS-PAS-HIN-21-008

- Measured sizable v_2 up to 50 GeV/c
- Prompt J/ ψ v₂ > B \rightarrow J/ ψ v₂ (p_T > 4 GeV/c)
- No strong dependence on p_T
- Indication of different dynamics for charm and beauty quarks

- What we learnt from previous measurements
 - Large fraction of prompt J/ψ are produced in parton shower confirmed in data differently from PYTHIA8

- What we learnt from previous measurements
 - Large fraction of prompt J/ψ are produced in parton shower confirmed in data differently from PYTHIA8
 - Large suppression is observed in low z : increasing R_{AA} as increasing z >> large suppression happens from Jet quenching

CIPANP 2022 @ Orlando Florida, 2022/09/02, Dong Ho Moon

17

- Low p_T : light > charm > beauty (mass ordering)
- High p_T : universal behaivor for all hadron species

Results : Triangular flow

CMS-PAS-HIN-21-008

- First separation of Prompt J/ ψ and B \rightarrow J/ ψ for triangular flow.
- No significant dependence on p_T and centrality.
- Triangular v₃ are consistent with zero within uncertainties.
 - J/ψ less sensitive to the initial geometry.

Results : Triangular flow

CMS-PAS-HIN-21-008 PLB 816 (2021) 136253 JHEP 10 (2020) 141 PLB 807 (2020) 135595

- Consistent v_3 between CMS and ALICE for $p_T > 3$ GeV/c
 - Low-p_T ✓ Open charm v₃ > hidden charm v₃ ✓ Initial geometry sensitivity larger
 - for open charm (due to light quarks?)
- High-p_⊤
 - v₃ converges and all data are compatible with zero

v_n Extraction for prompt ψ(2S)

CMS-PAS-HIN-21-008

Remove longer decay length ψ(2S)

22

- Prompt enriched sample by rejecting longer decay length (keep 90% prompt ψ(2S))
- Mass and v_n simultaneous fit : two CrystalBall (Sgn) + 1st order polynomial (Bkg)

•
$$v_n^{Sig+Bkg}(m_{inv}) = \alpha(m_{inv})v_n^{Sig} + (1 - \alpha(m_{inv}))v_n^{Bkg}(m_{inv})$$

• $\alpha(m_{inv}) = \frac{Sig(m_{inv})}{Sig(m_{inv}) + Bkg(m_{inv})}$

Results : Prompt w(2S) flows

CMS-PAS-HIN-21-008

- First measurement in heavy ion collisions.
- Indication of nonzero v_2 in 4 < p_T < 50 GeV/c and 10-60 % Cent.
- v_2 in (6.5 < p_T < 50 GeV/c, 10-60 %) \approx 0.18 with 2.2 σ significance.
- v₃ values are consistent with zero.

Results : Prompt $\psi(2S)$ flows

CMS-PAS-HIN-21-008

EPJC 78 (2018) 509

- $\psi(2S) v_2 > \text{Prompt J/}\psi v_2$?
- Hard to make any strong conclusion due to large statistical uncertainties, yet.
 - $\checkmark\,$ Need to be revealed with precision data in the future.

Summary

CMS-PAS-HIN-21-008

- Studied azimuthal anisotropy with charmonia in PbPb.
- Prompt J/ ψ v₂ > b \rightarrow J/ ψ v₂
- Sizable prompt J/ ψ v₂ at high p_T (~ 50 GeV/c)
- First measurements of prompt $\psi(2S) v_n$!
- Prompt $\psi(2S) v_2 \ge \text{prompt } J/\psi v_2$

Thank You Very Much for your attention !!!

Quarkonia in Heavy ion Collisions

IFAINT 2022 @ OHAHUU FIUHUA, 2022/07/02, DUNS 110 MOUH

Various in-medium effects

Dissociation

- Gluo-dissociation / Landau-damping
- Recombination (Regeneration)
 - Uncorrelated (off-diagonal) recombination
 - Correlated (diagonal) recombination
- Initial/Final state effects of nucleus
 - nPDF, CGC, coherent energy loss (initial/final)
 - co-mover breakup, nuclear absorption

Uncorrelated Correlated

Feed-down contributions

Possible scenario for ψ(2S) v₂

- $\psi(2S)$ flow
 - Not been measured yet in any collision system
 - · Different amount of recombination for excited state?

