

Observation of new structures in the J/Psi - J/Psi mass spectrum in pp collisions at sqrt(s)=13 TeV by CMS

Jane Nachtman (University of Iowa) for the CMS Collaboration

The CMS detector & trigger

 η coverage (track & muon):

Excellent detectors for (exotic) quarkonium:

- Muon system
 - High-purity muon ID, $\Delta m/m \sim 0.6\%$ for J/ψ
- Silicon Tracking detector, B=3.8T
 - $\Delta p_T / p_T \sim 1\%$ & excellent vertex resolution
- Special triggers for different analyses at increasing Inst. Lumi.
 - $\mu p_{T} (\mu \mu) p_{T} (\mu \mu)$ mass, ($\mu \mu$) vertex, and additional μ

Recent CMS contributions to heavy exotic states --Search for exotics through $B^0 \rightarrow \psi(2S)K_s \pi^+\pi^-$ decays

 $\mathcal{B}(B^0 \to \psi(2S) K_S^0 \pi^+ \pi^-) = (13.9 \pm 0.4 \text{ (stat)} \pm 0.9 \text{ (syst)} \pm 1.2 (\mathcal{B})) \times 10^{-5}$ First observation No significant charm related exotic states observed

Eur. Phys. J. C 82 (2022) 499

Other selected CMS contributions to heavy exotic states

New Domain of Exotics: All-Heavy Tetra-quarks

- First mention of 4c states at 6.2 GeV (1975): Prog. of Theo. Phys. Vol. 54, No. 2 (Just one year after the discovery of J/ψ)
- First calculation of 4c states (1981): Z. Phys. C 7 (1981) 317

- Many recent theoretical studies on (cccc), (bbbb), (bbcc):
 - controversial on existence of bound states below $\eta_b \eta_b$ threshold;
 - consistent on existence of resonant states above $\eta_b \eta_b$ threshold.

CMS analysis of J/ ψ J/ ψ --Data samples & Event selections

- 135 fb⁻¹ CMS data taken in 2016, 2017 and 2018 LHC runs
- Trigger: 3μ with a J/ ψ mass window, μ p_T from J/ ψ >3.5 GeV for 2017&2018 data
- Blinded signal region: [6.2,7.8] GeV

based on preliminary investigation on data collected in 2011-2012

- Main selections:
 - Fire corresponding trigger in each year
 - p_T(μ)>=2.0 GeV; |η(μ)|<=2.4; p_T(μ) (J/ψ)>=3.5 GeV (2017&2018); soft muon ID (very loose)
 - $p_T(\mu^+\mu^-) >= 3.5 \text{ GeV}; m(\mu^+\mu^-) \text{ in } [2.95, 3.25] \text{ GeV}; \text{ then constrain } m(\mu^+\mu^-) \text{ to } J/\psi \text{ mass}$
 - 4μ vertex probability >0.005
 - Multiple candidates treatment:
 - Select best combination of same 4μ (~0.2%) with

$$\chi_m^2 = \left(\frac{m_1(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_1}}\right)^2 + \left(\frac{m_2(\mu^+\mu^-) - M_{J/\psi}}{\sigma_{m_2}}\right)^2$$

- Keep all candidates arising from $\geq 4\mu$ (~0.2%)
- Signal and background samples produced by Pythia8, JHUGen, HELAC-Onia...

6

Steps to identify structures in $J/\psi J/\psi$ mass spectrum

- Null-hypothesis (initial baseline model): NRSPS+NRDPS
- Add potential structures to baseline model
 - Add most prominent structure to baseline model
 - Calculate its local significance
 - Keep in baseline only if > 3σ significance
 - Repeat until no more > 3σ structures

NRSPS—Non-Resonant Single Parton Scattering NRDPS—Non-Resonant Double Parton Scattering Local significance: standard likelihood ratio method

$$BW(m; m_0, \Gamma_0) = \frac{\sqrt{m\Gamma(m)}}{m_0^2 - m^2 - im\Gamma(m)}, \text{ where } \Gamma(m) = \Gamma_0 \frac{qm_0}{q_0 m},$$

Relativistic S-wave Breit-Wigner (BW) for each structure convolved with resolution function

- Most significant structure in first step is a BW at threshold, BW0--what is its meaning?
- Treat BW0 as part of background due to:
 - Inadequacy of our NRSPS model at threshold though one floating parameter?
 - BW0 parameters very sensitive to other model assumptions
 - A region populated by feed-down from possible higher mass states
 - Possible coupled-channel interactions, pomeron exchange processes...
- NRSPS+NRDPS+BW0 as our background

Final CMS model: 3 BWs + Background (null)

Statistical significance based on:

 $2 \ln(L_0/L_{max})$

	BW1 (MeV)	BW2 (MeV)	BW3 (MeV)
m	6552 ± 10	6927±9	7287±19
Г	124± 29	122± 22	95± 46
Ν	474± 113	492± 75	156± 56

 χ^2 Prob. = 1%

[6.2,7.8] GeV

- BW2[X(6900)] (>9.4 σ) confirmation
- Observation of BW1 (> 5.7σ)
- Evidence for BW3 (> 4.1σ)

Statistical significance only

Summary of systematic uncertainties and CMS result

Source	ΔM_{BW1}	ΔM_{RW2}	ΔM_{RW3}	$\Delta \Gamma_{BW1}$	$\Delta \Gamma_{BW2}$	$\Delta \Gamma_{BW3}$
signal shape	3	4	3	14	7	7
NRDPS	1	< 1	< 1	3	3	4
NRSPS	3	1	1	18	15	17
feeddown shape	11	>1	1	25	8	6
momentum scaling	1	3	4	-	-	-
resolution	< 1	< 1	< 1	< 1	< 1	1
efficiency	< 1	< 1	< 1	1	< 1	1
combinatorial background	< 1	< 1	< 1	2	3	3
total	12	5	5	34	19	20

Table 2: Systematic uncertainties on masses and widths, in MeV.

- Investigated effects of systematics on local significance by a profiling procedure a discrete set of individual alternative signal and background hypotheses tested in minimization
 - Significant change: BW1 significance changed from 6.5 or to >5.7 or
 - No relative significance changes for BW2 and BW3

X(6900) reported by LHCb

- In 2020, LHCb reported X(6900) state in $J/\psi J/\psi$ final state, <u>Sci.Bull.65 (2020) 23</u>
- Tried two different models
 - Model I: background+2 auxiliary BWs+ $X(6900) \rightarrow$ poor description of 'dip' around 6.7 GeV
 - Model II: a "virtual" X(6700) to interfere with NRSPS background to account for dip
- LHCb agnostic on which one is to be preferred
- What happens if fit CMS data using LHCb models?

Model I

Fit with LHCb model I--background+2 auxiliary BWs+ X(6900)

 117 ± 24

CMS Data shows a shoulder before BW1

 112 ± 27

 6927 ± 10

CMS shoulder helps make BW1 distinct

 6550 ± 10

Does not describe well dips

Model I

CMS

- CMS vs LHCb comparisons:
 - $135/9 \approx 15X$ (int. lum.)
 - $(5/3)^4 \approx 8X$ (muon acceptance due to pseudo-rapidity range)
 - Higher muon p_T (>3.5 or 2.0 GeV vs >0.6 GeV)
 - Similar number of final events

Fit with LHCb model II—DPS+X(6900)+"X(6700)" interferes with NRSPS

- X(6900) parameters are consistent
- CMS obtained larger amplitude and natural width for BW1
- CMS's X(6600) is 'eaten' –does not describe X6600 and below
- Does not describe X(7200) region

Summary

CMS found 3 significant structures using 135 fb⁻¹ 13 TeV data

M[BW1] = 6552 ± 10 ± 12 MeV	Γ[BW1] = 124 ± 29 ± 34 MeV	>5.7 0
$M[BW2] = 6927 \pm 9 \pm 5 MeV$	$\Gamma[BW2] = 122 \pm 22 \pm 19 \text{ MeV}$	>9.4 0
M[BW3] = 7287 ± 19 ± 5 MeV	$\Gamma[BW3] = 95 \pm 46 \pm 20 \text{ MeV}$	>4.1 0

- BW2 consistent with X(6900) reported by LHCb
- CMS found two new structures, provisionally named as X(6600), X(7200)
- A family of structures which are candidates for all-charm tetra-quarks!
- Dips in the data show possible interference effects --- Under study
- More data/knowledge needed to understand nature of near threshold region
- All-heavy quark exotic structures offer system easier to understand
- A new window to understand strong interaction

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-21-003/index.html

CMS has good sensitivity to all-muon final states in this mass region

Backup

Significances including systematics

- To include systematics, alternative resonance/background shapes applied in the fit:
- Calculate signal- and null-hypothesis *NLL_{syst}* including systematic using:

 $NLL_{syst-sig} = Min\{NLL_{nom-sig}, NLL_{alt-i-sig} + 0.5 + 0.5 \cdot \Delta dof\}$

- $NLL_{nom-sig}$ means the NLL of nominal 'signal hypothesis' fit.
- $NLL_{alt-i-sig}$ means the NLL of i-th alternative fit of 'signal hypothesis'
- Δdof means the additional free parameters comparing to the nominal 'signal hypothesis' fit.
- $NLL_{syst-null} = Min\{NLL_{nom-null}, NLL_{alt-j-null} + 0.5 + 0.5 \cdot \Delta dof\}$
- Significance including systematics as usual from $NLL_{syst-null} NLL_{syst-sig}$

	Significance	with syst.
BW1		
BW2		
BW3		

J/ψ signal

Final CMS model: 3 BWs + Backgrounds+ BW0

Introduction and Motivation

- Measurements of quarkonium production, including double quarkonium or simulataneous production with W/Z provides insight into particle production at LHC/Tevatron
 - Single particle interaction (Single Parton Scattering (SPS))
 - Multiple Particle Interaction (MPI or Double Parton Scattering (DPS))
 - Probable, given high flux at LHC
 - Difficult to calculate
 - Experimental observations needed!
 - Generally assume SPS dominant
 - SPS \square strongly correlated \square small | \triangle y |
 - DPS \square less correlated \square large $|\Delta y|$
 - J/ ψ Y W/Z clean signatures to probe Tevatron vs LHC

Introduction and Motivation: Quarkonium plus X to Search for Resonances

- Expect bottomonium ground state $\eta_b = J/\psi J/\psi$ (suppressed)
 - Measurements to test predictions
- Exotic tetraquark charm states
- Exotic states (eg, CP-odd Higgs in NMSSM mixes with η_b, alters rate
- Or something entirely unexpected??

