

- Experimental setup
- Results and discussion
- Theoretical calculations
- Summary and outlook

β-decay of ¹³³In: a bridge between nuclear structure and the r-process

Zhengyu Xu

on behalf of the VANDLE group at UTK and the IDS collaboration at ISOLDE-CERN

THE UNIVERSITY OF TENNESSEE KNOXVILLE

14th Conference on the Intersections of Particle and Nuclear Physics August 29 – September 4, 2022 Lake Buena Vista, Florida

Beta decay, nuclear structure, and the r-process

$$\frac{1}{T_{1/2}} = \sum_{E_i \ge 0}^{E_i \le Q_\beta} S_\beta (E_i) \times f(Z, Q_\beta - E_i) \quad S_\beta (E_i) = \langle \psi_f | \hat{O}_\beta | \psi_{mother} \rangle \Big|^2$$

- S_{β} (β -decay strength) \leftarrow Wavefunction overlap between parent and daughter nuclei
- $f(Z, Q_{\beta} E_i) \leftarrow$ phase-space factor (Fermi integral)

Why studying S_{β} is important?

- Nuclear structure in parent and daughter nuclei
- $S_{\beta} \rightarrow$ Gross nuclear β -decay properties ($T_{1/2}$, P_n , etc)
- Key inputs to understand nucleosynthesis (e.g., the r-process)

The role of nuclear physics in nucleosynthesis

The r-process: rapid neutron capture + β decay

Requires the β-decay properties of a large number of neutron-rich nuclei (out of experimental reach)

Global models are employed to predict those unknown properties

Their S_{β} needs to be verified by experimental measurement!

Experimental measurements resolve theoretical ambiguity

Similar $T_{1/2}$ may be predicted from **different** S_{β} distribution

- Moller03: P. Möller et al., Phys. Rev. C 67, 055802 (2003).
- Borzov16: I. Borzov, Physics of Atomic Nuclei 79, 910–923 (2016).
- Marketin16: T. Marketin et al., Phys. Rev. C 93, 025805 (2016).

Measuring beta-strength function in the r-process nuclei \rightarrow Strong constrain on nuclear theories

¹³³In (Z=49 and N=84) is special:

- 133 In $\rightarrow ^{133}$ Sn* $\rightarrow ^{132}$ Sn+*n*: system with simple structure
- Large neutron-proton asymmetry → a variety of decay channels that are available in the r-process nuclei
- A perfect beta-decay demonstrator in the southeast of ¹³²Sn

Strong β -decay channels in the southeast of ¹³²Sn (Z<50, N>82)

- A strong GT transition $vg_{7/2} \rightarrow \pi g_{9/2}$
- No other GT transitions equally competitive
- Dominates the β decay of the whole area

protons neutrons

FF transitions

- Smaller transition matrix than the GT transition
- Large transition energy (phase-space factor) due to the asymmetric neutron-to-proton ratio
- Competing with the GT transition, shorten the half life

Strong β-decay channels in the southeast of ¹³²Sn (Z<50, N>82)

The main decay channel in ¹³³In has not been observed...

(a)

(b)

1800

We aimed for the simple decay from ¹³³In

GT: A strong transition with large matrix element FF: many weak transitions with small matrix elements but large phase-space factor

The GT and FF channels in ¹³³In are universal in this region

Following the β decay of $^{133}In,$ we want to

- Determine the excitation energy of the GT state $(vg_{7/2})$ in ¹³³Sn and the $B_{GT}(vg_{7/2} \rightarrow \pi g_{9/2})$ matrix element.
- Address other neutron-hole orbitals inside the N=82 core, and the FF decay strength to the corresponding states in ¹³³Sn.
- → Establish the first complete β-decay strength distribution in an r-process nucleus

Experimental at ISOLDE (IS632, PI: Miguel Madurga and Robert Grzywacz)

ISOLDE Decay Station (IDS)

Isomer selection with RILIS at ISOLDE

- 133 In in the ground state (9/2⁺) or isomer (1/2⁻) can be separated!
- Beta-decay selection rules + laser ionization \rightarrow spin-parity assignment (tentative)

First neutron spectroscopy with isomer selection using RILIS

TENNESSEE KNOXVILLE

Simple interpretation from the single-particle picture

TENNESSEE KNOXVILLE

Simple interpretation from the single-particle picture

spectators

Large-scale shell-model (LSSM) calculation on ¹³³In→¹³³Sn

We need to include particle-hole excitation across ¹³²Sn!

Large model space + realistic *NN* potential

- ⁸⁸Sr core with 12 single-particle orbits
- Single-particle energies from experimental data
- Two-body-matrix-element from (a) $N^{3}LO$ (MBPT) [1], (b) Argonne V18 (MBPT) [2], and (c) V_{MU} (private communication with Prof. C.X. Yuan) [3]

D. Entem et al., Phys. Rev. C 68, 041001 (2003).
 R. B. Wiringa et al., Phys. Rev. C 51, 38–51 (1995).

[3] T. Otsuka et al., Phys. Rev. Lett. 104, 012501 (2010). MBPT = Many-body perturbation theory. M.Hjorth-Jensen et al, Physics Reports 261, 125–270 (1995)

Comparison: Experiment vs. LSSM

- Four transitions \rightarrow neutron 2p1h states
- $S_{\beta} = 1/ft$ (same for GT and FF transitions)
- GT and FF transition matrix elements are calculated using SM wave functions (KSH
- FF quenching factors from Ref. [1]
- GT quenching factor q=0.6 [2].

[1] Q. Zhi *et al.*, Phys. Rev. C. **87**, 025803 (2013).
[2] E. Caurier et al., Phys. Lett. B 711, 62 (2012).

Comparison: Experiment vs. LSSM

The simple single-particle picture is supported by LSSM

The GT strength is sensitive to the amount of proton excitation (across Z=50)!

Comparison: Experiment vs. LSSM

- Good agreement up to Ex =9 MeV
- FF below 6 MeV and GT above 6 MeV
- The discrepancy at >9 MeV might be due to the model truncation
- Good shell-model initiator for the β decay in the southeast of ¹³²Sn (important for the r-process)
- Future development is demanded

Feedback to the global calculations

Ground-state decay of ¹³³In ($I^{\pi}=9/2^{+}$)

 $(u) = 10^{3}$

Exp data

Because the $7/2^+$ state (the lowest GT state) in ¹³³Sn is observed at 5.92 MeV:

- FF partial half life: sum of β feedings up to 5.9 MeV
- GT partial half life: sum of β feedings beyond 5.9 MeV

List of models:

- Moller03: P. Möller et al., Phys. Rev. C 67, 055802 (2003).
- Borzov16: I. Borzov, Physics of Atomic Nuclei 79, 910 (2016).
- Marketin16: T. Marketin et al., Phys. Rev. C 93, 025805 (2016).
- Ney20: E. Ney, J. Engel et al., Phys. Rev. C 102, 034326 (2020).
- Sarriguren22: P. Sarriguren private communication (2022).

Different types of QRPA calculations that differ in their degree of self consistency, the density functional used, or the method of calculation

Even for this (simple) nucleus, predicting the partial half lives of (or the competition between) GT and FF channels is not trivial!

Summary and conclusion

- In experiment:
 - Decay of ^{133g}In (9/2+) and ^{133m}In (1/2-) were studied at IDS with INDiE + RILIS
 - Observed all the major decay channels (GT+FF) from ¹³³In via isolated neutron resonances in ¹³³Sn
 - Link the observation to the single-particle transitions near ¹³²Sn
- In theory:
 - Calculate the ¹³³In \rightarrow ¹³³Sn decay with LSSM + effective *NN* potentials
 - Well reproduced the FF decay strength at lower Ex energy.
 - The GT strength at ~ 6MeV is sensitive to the amount of proton excitation across Z=50
- Feedback to global calculations:
 - Different global models (for r-process simulation) predictions a wide range of the GT+FF competition
- Our measurement established the β-decay strength distribution of extremely neutron-rich nuclei
- \rightarrow An anchor-point measurement for the state-of-the-art models in the southeast of ¹³²Sn

Collaboration of IS632

Z. Y. Xu,¹ M. Madurga,¹ R. Grzywacz,^{1,2} T. T. King,¹ A. Algora,³ A. N. Andreyev,⁴ J. Benito,⁵ T. Berry,⁶ M. J. G. Borge,⁷ C. Costache,⁸ A. Fijalkowska,^{9,10} A. Gottardo,¹¹ L. Fraile,⁵ C. Halverson,¹ J. Heideman,¹ A. Illana,¹² Ł. Janiak,¹⁰ T. Kurtukian-Nieto,¹³ A. Korgul,¹⁰ R. Lozeva,¹⁴ R. Licâ,^{15,8} C. Mazzocchi,¹⁰ C. Mihai,⁸ A.I. Morales,³ M. Piersa,¹⁰ P. Sarriguren,⁷ M. Singh,¹ C. Sotty,⁸ M. Stepaniuk,¹⁰ O. Tengblad,⁷ A. Turturica,⁸ V. Vedia,⁵ S. Viñals,⁷ R. Yokoyama,¹ and C. X. Yuan¹⁶ ¹Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ²Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ³Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071, Valencia, Spain ⁴University of York, Department of Physics, York YO10 5DD, North Yorkshire, United Kingdom ⁵Grupo de Física Nuclear and UPARCOS, Universidad Complutense de Madrid, CEI Moncloa, E-28040 Madrid, Spain ⁶Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom ⁷Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid, Spain ⁸ "Horia Hulubei" National Institute for Physics and Nuclear Engineering, RO-077125 Bucharest, Romania ⁹Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA ¹⁰Faculty of Physics, University of Warsaw, PL 02-093 Warsaw, Poland ¹¹IPN, IN2P3-CNRS, Université Paris-Sud, Université Paris Saclay, 91406 Orsay Cedex, France ¹²KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium ¹³CENBG, Université de Bordeaux—UMR 5797 CNRS/IN2P3, Chemin du Solarium, 33175 Gradignan, France ¹⁴CSNSM, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay, France ¹⁵ISOLDE, EP Department, CERN, CH-1211 Geneva, Switzerland ¹⁶Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, Guangdong, China

Recent activities of VANDLE

Backup slides

Detector components

Neutron efficiency curve

Gamma-ray gated ToF_n **spectrum**

Gamma-ray gated ToF_n **spectrum**

ToF with high threshold

- A few candidates of neutron unbound states that undergo both gamma decay
- Both neutron and gamma decays from the 3560-keV state have already been
- The ratio of partial decay width can be extracted
- Will use statistical model (Kawano et al.,) to understand the competition

[1] P. Hoff et al., Phys. Rev. Lett. 77, 1020 (1996). [2] V. Vaquero et al., Phys. Rev. Lett. 118, 202502 (2017). [3] M. Piersa et al., Phys. Rev. C 99, 024304 (2019).

