Lattice Calculation of the Proton Charge Radius

Sungwoo Park

Jefferson Lab, VA, USA

[on behalf of Nucleon Matrix Elements (NME) Collaboration]

Tanmoy Bhattacharya, Rajan Gupta, Yong-Chull Jang, Balint Joo, Santanu Mondal, Frank Winter, Boram Yoon

CIPANP 2022, September 2022

PNDME Collaboration:

Thirteen 2+1+1-flavor HISQ ensembles = clover-on-HISQ formulation

NME Collaboration:

Thirteen 2+1-flavor clover ensembles = clover-on-clover formulation

PNDME and NME members

- Tanmoy Bhattacharya (LANL)
- Vincenzo Cirigliano (LANL->INT, UW)
- Rajan Gupta (LANL)
- Emanuele Mereghetti (LANL)
- Boram Yoon (LANL)
- Junsik Yoo (LANL)
- Yong-Chull Jang (Columbia)
- Sungwoo Park (Jlab)
- Santanu Mondal (MSU)
- Huey-Wen Lin (MSU)
- Balint Joo (ORNL)
- Frank Winter (Jlab)

References

PNDME

•	Charges:	Gupta et al,	PRD.98	(2018) 0	34503
•	AFF:	Gupta et al,	PRD 96	(2017) 1	14503
•	AFF:	Jang et al,	PRL 124	(2020) 07	72002
•	VFF:	Jang et al,	PRD 100	(2020) 0	14507
•	$\sigma_{\pi N}$	Gupta et al,	PRL 127	(2021) 24	42002
•	d_n from Θ -term	Bhattachary	/a etal, Pl	RD 103 (2	021) 114507
•	d_n from qEDM	Gupta et al,	PRD 98 (2018) 09	1501
•	Moments of PDFs	Mondal et a	al, PRD 10)2 (2020)	054512
•	Proton spin:	Lin et al, PR	D 98 (201	L8) 09451	12
NME					
•	Charges, FF:	Park et al,	PRD 10)5 (2022)	054505
•	Moments of PDFs	Mondal et a	al, JHEP O	4 (2021)	044

Acknowledgements: MILC for HISQ ensembles. DOE for computer allocations at NERSC and OLCF, USQCD, and IC at LANL

Electromagnetic Form Factors, G_E and G_M

- Dirac/Pauli Form factors, $F_{1,2}$ parametrize the matrix element of the electromagnetic current $V_{\mu}^{\text{em}} = \frac{2}{3} \bar{u} \gamma_{\mu} u \frac{1}{3} \bar{d} \gamma_{\mu} d$ within nucleon ground states $\langle N(\mathbf{p}', s') | V_{\mu}^{\text{em}} | N(\mathbf{p}, s) \rangle = \bar{u}(\mathbf{p}', s') \left(F_1(\mathbf{q}^2) \gamma_{\mu} + \frac{i\sigma_{\mu\nu}}{2M_N} F_2(\mathbf{q}^2) \right) u(\mathbf{p}, s)$
- Sachs form factors, $G_E = F_1 \frac{Q^2}{4M_N^2}F_2$, $G_M = F_1 + F_2$
- Isovector form factors $G_{E,M}^{u-d} = G_{E,M}^p G_{E,M}^n$ assuming flavor SU(2) isospin symmetry,

$$\langle p | \bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d | p \rangle = \langle p | V_{\mu}^{\text{em}} | p \rangle - \langle n | V_{\mu}^{\text{em}} | n \rangle$$

Isovector Charge Radii

- Proton electromagnetic form factor $G^p_{E,M}$ has contribution from both connected and disconnected diagrams
- We focus on the isovector form factor $G_{E,M}^{u-d} = G_{E,M}^{p-n}$ where the disconnected contribution cancels in the isospin symmetric limit.
- We calculate $G_{E,M}^{u-d}(Q^2)$ as a function of $Q^2 = -q^2$ using lattice QCD!
- Charge radii squared

$$\langle r_E^2 \rangle^{u-d} = -6 \frac{d}{dQ^2} \left(\frac{G_{E,M}^{u-d}(Q^2)}{G_{E,M}^{u-d}(0)} \right) \Big|_{Q^2=0}$$

Sungwoo Park, CIPANP 2022

Lattice QCD

[Formulated by K. Wilson (1974). Numerical computation field opened by M. Creutz (1979)]

Lattice QCD is QCD defined on a 4-dimensional Euclidean spacetime lattice

- Finite lattice spacing: (*a*)
- Quark fields (q, \overline{q}) , Gauge fields (gluons): (U_{μ})
- Perturbative & Numerical (nonperturbative) calculations

The simulation allows **ab initio** calculations of nonperturbative QCD interactions of quarks and gluons using the **Feynman path integral** formulation of QFT.

Calculation of Nucleon Matrix Element

• Properties of nucleons ($\langle p|0|p \rangle$, Form Factor) are extracted from the <u>**3-point correlation function**</u> $C(t, \tau) \equiv \langle N^p(\tau)O(t)\overline{N}^p(0) \rangle$:

Excited State (ES) effect

- Nucleon signal/noise decays $\propto e^{-(E-1.5M_{\pi})\tau}$ with Euclidean time τ .
- Nucleon operator creates ground state nucleons (N) plus all excited states with the same quantum number, including $N\pi$, $N\pi\pi$, $N\rho$, $N^*(1440)$, $N^*(1710)$,

G_E^{u-d} : Excited State (ES) effect

[NME (2021), PRD 105 054505] $a \approx 0.071 \text{ fm}, M_{\pi} \approx 170 \text{ MeV}$ At $\vec{q} = \frac{2\pi}{L} (1,0,0)$

- Over 4 different strategies to control the ES effect, $G_E^{u-d}(\vec{q})$ has $\approx 4\%$ variation
- At larger momentum transfer \vec{q} , the data and fit become less sensitive to ES

- Data displayed: 3-point/2-point ratio of correlation functions showing dependence on t, τ due to ES
- Gray band: $G_E^{u-d}(\vec{q})$ determined from the ES fit.

Gauge Ensemble: 2+1-flavor Clover Ensembles

Ensemble ID	a [fm]	M_{π} [MeV]	$M_{\pi}L$	N _{conf}
a127m285	0.127	285	5.87	2002
a094m270	0.094	269	4.09	2469
a094m270L	0.094	269	6.15	4510
a093m220	0.093	216	4.95	2000
a093m220X	0.093	214	4.81	2005
a091m170	0.091	169	3.35	4012
a091m170L	0.091	170	5.01	3000
a073m270	0.073	272	4.81	4720
a072m220	0.072	223	5.10	2000
a071m170	0.071	166	4.28	2500
a070m130	0.070	127	4.37	980
a056m280	0.056	281	5.10	2700
a056m220	0.056	214	4.38	2049

- **13 gauge ensembles** generated by the Jlab/W&M/LANL/MIT collaborations
- Simulations are being done over a range of the three free parameters $(a, M_{\pi}, M_{\pi}L)$
- Results obtained by extrapolation to the physical values $(a = 0, M_{\pi}^{Phys}, M_{\pi}L = \infty)$

Summit (GPU) at OLCF

Major Uncertainties in Lattice QCD calculations

- Finite lattice spacing a (UV cut-off effect)
- Chiral fit to get value at physical pion mass
- Finite Volume

- Statistical errors
- Excited state contaminations
- Renormalization

Chiral-Continuum Finite volume extrapolation of nucleon axial charge g_A [NME (2022), preliminary]

G_E^{u-d} , G_M^{u-d} and Kelly parametrization

- Lattice data agree with the Kelly parametrization of the experimental data
- Errors in lattice data for G_E^{u-d} , G_M^{u-d} much (>10X) larger than experimental data

[J.J.Kelly, PRC 70, 068202 (2004)]

G_E^{u-d} : Examined Dipole, Pade and z-expansion fits

[NME (2021), PRD 105 054505]

G_M^{u-d} : Examined Dipole, Pade and z-expansion fits

[NME (2021), PRD 105 054505]

$\langle r_E^2 \rangle^{u-d}$: Chiral-Continuum-Finite Volume extrapolation

Leading corrections included in the fit ansatz

•
$$c_1 + c_2 a + c_3 \log \frac{M_{\pi}^2}{\lambda^2} + c_4 \log \frac{M_{\pi}^2}{\lambda^2} e^{-M_{\pi}L}$$

Nucl.Phys.A635, 121 (1998) Nucl.Phys.A679, 698 (2001) Phys.Rev.D71, 034508 (2005)

Sungwoo Park, CIPANP 2022

Summary

- We are calculating isovector electromagnetic form factors $G_{E,M}^{u-d}(Q^2)$ as part of a comprehensive analysis of nucleon structure
- Form factors presented as a function of Q^2 over $0.04 < Q^2 < 1 \text{ GeV}^2$.
- The chiral-continuum-finite volume extrapolation of the isovector electric charge radius $\langle r_E^2 \rangle^{u-d}$ is presented. This preliminary result is compared with other lattice and experimental results.
- Dominant systematic uncertainty in our preliminary results is from accounting for residual excited state (ES) effect
 - Need higher statistics to resolve the ES at M_{π}^{Phys} and on finer lattices (smaller a)
 - Higher order ES fits are under investigation

Acknowledgements

- The calculations used the CHROMA software suite.
- We thank DOE for computer time allocations at NERSC and OLCF.
- We thank the USQCD collaboration for computer time
- Institutional Computing at LANL for computer time