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Outline

This talk is designed to give a broad overview of 
the various HAYSTAC results and the current 
R&D projects currently underway 
• Introduction to Axion Dark Matter 
• Overview of the HAYSTAC experiment 
• Summary of Phase 1/2 Results 
• Current R&D projects 
• Summary/Conclusion 
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Introduction

3



Dark Matter Theories

4

• This is a very active 
area of research 

• With so few concrete 
requirements for any 
DM candidate you 
can easily create any 
number of particles 
that can fit the bill



Dark Matter Searches so Far
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• For many years one of the 
dominant DM candidates was 
the WIMP 

• This was very low hanging 
fruit that could be easily 
probed with state-of-the-art 
detectors as those shown in 
this session 

• A lot of the interesting 
parameter space has been 
explored  

• Other DM candidates have 
recently gained interest from 
the community

Neutrino 
Floor

Current Limits (solid)

Projected Limits 
(dashed)



Axions as DM Candidate
• Axions represent a new class of 

ultra light (high number density) DM 
candidates 

• They check off many of the 
requirements for a DM candidate: 
• Cold (non-relativistic) 
• Stable 
• Feeble interaction strength 
• Production mechanisms possible 

in early universe 
• Naturally come about via Peccei 

Quinn solution to strong CP 
problem
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Axions as DM Candidate

• Very open parameter space 
• We need to probe across all 

12+ orders of magnitude of 
possible axion masses 

• You can no longer use 
traditional particle physics 
detection techniques to 
search for axions 

• Low mass however equals 
high number density 
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Axion Dark Matter Detection
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• In the case of Axions: 
• Axions only sometimes 

convert into photons in the 
presence of an external 
magnetic field 

• The rate is proportional to 
the magnetic field and the 
axion’s coupling strength 

• Axions are also extremely 
light and slow, so there is 
very little energy to start 
with 

• So let us start with a sealed 
metal cavity in a uniform 
external magnetic field 

• In this cavity you have intrinsic 
EM modes that fill the volume

Typical Energy 
disposition: 1e-24 Watts!



Cavity Based Axion Searches
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• For maximum energy 
transferal you want your 
detector to as closely match 
the mass/energy of the 
incoming particle 

• The Axion has a uniform 
energy profile so we need to 
look at the EM modes that 
most nearly resemble a 
uniform field 

• However; boundary 
conditions make this 
impossible to achieve 
everywhere

Axions are 
depositing 
their energy 
uniformity 
throughout 
the cavity 
volume!

This smallest 
dimension is 
what  
drives the 
overall size/
frequency 
range of the 
experiment



Scale of Axion Experiments
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ADMX experiment 
Mass range: ~ 0.6 GHz 
Lower frequency means 
larger cavity, complex 
cryogenic infrastructure 

HAYSTAC experiment 
Mass range: ~ 5.2 GHz 
Smaller cavity, easier to 
cool and install, 
potentially some loss of 
sensitivity

ADMX and 
HAYSTAC 
bracket the 
frequency range 
that can be 
accessed 
through cavity 
based 
experiments



HAYSTAC Collaboration
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UC Berkeley CU BoulderYale University
The HAYSTAC Collaboration is made up of four institutions 

With support from:

Alexander Droster 
Alexander Leder 
Heather Jackson 
MacKenzie Wooten 
Karl van Bibber 

Mehmet Anil 
Maxime Malnou 
Kelly Wurtz 
Konrad Lehnert 

Sidney Cahn 
Mike Jewell

Huaijin (Jean) Wang 
Ling Zhong 
Steve Lamoreaux 
Reina Maruyama

Johns Hopkins
Danelle Speller



Probing Axions with HAYSTAC
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• Cavity based 
experiments measure 
the coupling between 
a DC external 
magnetic field and the 
axion 

• Inside a a tunable 
cavity, we can search 
for a excess in signal 
power at resonance of 
detector 

• Searches seek to find 
small energy 
deposition in power 
spectrum 

• Requires low 
temperature/noise 
environments

power vs. 
frequency

S
ol

en
oi

d

𝑩

Low-noise 
Amp

𝛄*/𝛄

Axion Field



HAYSTAC Experimental Setup

• In order to probe the most DM 
parameter space in the shortest 
time we need: 

• Large magnetic field (9 Tesla) 
• Low temperature (127 mK) 
• Low noise environment (2.3 

quanta) 
• Good Form Factor (C010 ~ 0.5) 

• High Q (1e4) 
• Large Volume (1.5 L)
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Cooling down the Experiment
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• It is absolutely vital that the 
whole experiment gets cooled 
down to as low of a temperature 
as possible 

• Cool superconducting magnet 
• Minimize noise on our readout 

electronics 
• Remember that we are looking at 

power deposited in our cavity 
region 

• Anything hotter than our readout 
will radiate photons that can also 
deposit power

Cooling tuning 
rod happens 
through this stem



HAYSTAC Infrastructure

• New BlueFors 
dilution refrigerator 
installed at Yale 

• New variable 
temperature stage 

• Improved cavity 
support structure 

• Software upgrades 
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HAYSTAC Experiment Timeline
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Feb 2021 
Phase II results 
published in 
Nature 
590, 238–242 
(2021)

We are now here:



Phase I/II Results
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HAYSTAC Phase I – Hot Rod

• HAYSTAC designed to 
provide a platform for 
new cavity and 
amplifier technologies 
in the 3-12 GHz range 

• Phase I implemented 
first solution to the hot 
rod problem 

• Solution tested to 
ensure minimum effect 
on Q of cavity 
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HAYSTAC Phase I – Noise Level

• Run 2 of Phase I 
achieved noise level 
2 times the standard 
quantum limit 

• This was possible 
thanks in part to 
solving the hot rod 
rod problem 

• The problem still 
remains though 
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HAYSTAC Phase I – Results
Put it all together….
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Highest frequencies/masses probed by a cavity 
experiment so far!



HAYSTAC Phase II – Squeezed State

• We have been able 
to demonstrate the 
first squeezed state 
receiver in a 
microwave cavity  

• Improvement in SNR 
has been shown 
uniformly across a 
large bandwidth 
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HAYSTAC Phase II – Squeezed State

• Phase II implemented 
new squeezed state 
receivers to further 
improve performance 

• We have seen a factor 
of 2.1 improvement in 
the scan rate with 
benchtop tests using 
injected test axion 
signals 

22

4 dB of squeezing 
demonstrated at 8.4 T

NoiseFaxion w/o 
squeeze

Faxion with 
squeeze



HAYSTAC Phase II – Results
Put it all together….
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• Phase I shows the full range of the HAYSTAC 
experiment 

• Phase II shows the potential of squeezers



Moving Forward
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• ADMX and HAYSTAC have shown the sensitivity 
range of cavity based axion searches 

• Outside of this range the engineering 
constraints present a problem

Larger Cavities - difficult to cool down
Smaller Cavities - 
sensitivity reach 
suffers



Present and Future Projects
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Moving Forward
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• We are actively 
analyzing Phase IIb 
data now 

• We paid particular 
attention to 
finding a way to 
thermally connect 
the tuning rod 
without losing 
cavity performance 

Cavity wall = 60 mK

Tuning Rod = 225 mK

Also performed a 
series of mock 
cool downs to test 
thermalization on 
a test piece



Current R&D Efforts– Multi-rod Cavity
• HAYSTAC is a testbed for 

new techniques to probe 
higher frequency (read 
mass) axion models 

• Symmetric tuner has a 
superior form factor 
compared to asymmetric 
tuning mechanisms 

• 7-rod cavity has been 
constructed and plated 
and is undergoing 
additional testing at 
Berkeley 

•27



Current R&D Efforts– Photonic Band Gap (PBG)

• Other frequency modes 
create a forest of mode 
that can hybridize, 
reducing the overall form 
factor 

• PBGs are a regular 
lattice of rods that 
contain a specific mode 
in their center region 

• Other modes freely 
propagate out – clear out 
intruder modes 

28

TM010 mode



Summary/Conclusion
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Conclusion

• The HAYSTAC experiment has demonstrated the 
highest frequency sensitivity for cavity axion 
searches and has successfully implemented 
squeezing in an axion experiment 

• There is lots of exciting R&D underway to 
further expand the frequency reach of cavity 
based experiments  

30

Data coming soon!
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Thank you for your attention

Any additional questions: aleder@berkeley.edu



Questions/Comments?
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Extra Slides
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Axions as DM Candidate
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Finding yourself in a Squeeze

• What is squeezing? 
• The Heisenberg UC 

principal is always valid 
• Start with a general 

quantum mechanical state 
that always satisfies the 
HUC principal 

• You can create a series of 
mathematical operations 
on this wave function that 
inversely affect the UC in 
pos/momentum  

35
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Finding yourself in a Squeeze

• Now we can create a state 
where we are in control of 
the uncertainty in either 
the position or momentum 

• You can do this for any pair 
of commuting variables, 
including Energy/Time  

36
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Finding yourself in a Squeeze
• If you then draw out the 

resulting wave functions you 
can then pick one: 
• High degree of certainty 

about the amplitude 
(energy) of the wave 

• OR 
• High degree of certainty 

about phase (timing) of the 
wave 

• On HAYSTAC we don’t care as 
much about when the axion 
interacted

37



   Squeezing implies uniformly higher S/N over a wider bandwidth

The scan rate with squeezing optimizes at large overcoupling of the cavity, thus higher BW

κm=10κl
κm=10κl

κm=1.5κl
Not squeezed

Squeezed



   Corresponding factor of 2.12 speedup in scan rate demonstrated 

❑ Mock axion search conducted on 
the JILA testbed 

❑ Synthetic signal injected into the 
system of unknown frequency 

❑ Search protocol repeated 200 
times for each configuration, data 
plotted in terms of their standard 
deviation 

❑ Results are  µs = 6.05 ± 0.07 (with 

squeezing), µs = 4.15 ± 0.07 (w/o), 

leading to 2.12 ± 0.08 speedup 

❑ HAYSTAC commissioning has now 
demonstrated squeezing 

❑ JILA working on x10 speedup 



Photonic Band Gap (PBG) background

Basic definition 
– Periodic lattice of metal and/or dielectric 

rods with an open boundary 
– Band gap behavior: certain frequencies 

cannot propagate through lattice 
(“disallowed”)

Creation of a PBG resonator 
– Defect in lattice confines “disallowed” modes 
– All other modes propagate out 
– Our case: confine TM modes, not TE modes

40



Aluminum prototype “stock” lattice

Prototype goals 
– Investigate tuning: 

– Single tuning rod in defect 
(same as HAYSTAC cavity) 

– Tuning range: 7.4 to 9.4 
GHz 

– Study fabrication possibilities: 
– Alignment/tolerances 
– Assembly options 
– Try plating

41



Aluminum prototype “stock” lattice

42



Capacitor

SQUID array 100 µm

Flux line

JILA/Colorado 
SSR Test-bed

7 GHz Cavity



Low noise amplification with Josephson parametric amplifiers 

coil

port 2:  
pump

flux line

SQUID array
port 1: 
signal

capacitor 100 µm

tunable over 1.5 GHz  
gain > 30 dB

coil 
tuned

 
𝐺

 (d
B

)

 𝑓 (GHz)



     Optimization Campaign
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• The DM Radio 50 L campaign has 
multiple components that all have 
to be simultaneously co-optimized  


• This is an iterative process, where 
individual calculations build upon 
each other


• Here we are going to talk about the 
main 5 campaigns that have gone 
into the design of the 50 L 
experiment 


• Experience will inform m3 design as 
well - see other talks in section

A. Leder | DM Radio 50 L | April APS Meeting | April 18, 2021 | email: aleder@berkeley.edu



     Magnet Design

• Stray fields must be kept low to avoid 
driving superconducting components normal


• Design for operation at higher fields built in


• Magnet design finalized and submitted to 
SSI for delivery by end of 2021

A. Leder | DM Radio 50 L | April APS Meeting | April 18, 2021 | email: aleder@berkeley.edu

Parameter Design Goal
Peak Field 0.1-1 Tesla
Max Fringe 

Field
100 mTesla

Science 
Volume

50 Liters

46
Fringe field profiles 
along gap



     Simulating Sheath Modes

• Work performed by Alex Droster 
utilizing HFSS simulations


• Two goals:


• Find the lowest order racetrack 
modes inside the sheath


• Minimize coupling between pickup 
loop and lossy materials


• A variety of sheath materials/coatings 
were also tested and shown only to 
contribute minority to coupling losses

A. Leder | DM Radio 50 L | April APS Meeting | April 18, 2021 | email: aleder@berkeley.edu

Dominant 
coupling 
losses 

stem from 
this 

mandrel 
dimension

47

Superconducting Sheath

Magnet/Mandrel



     Sheath/Pickup Signal Coupling

• Work performed by Chiara Salemi


• Simulations have scanned across 
a wide variety of dimensions for 
both the sheath and pickup


• Submitted design have been 
optimized for maximum coupling 
between axion and sheath and 
sheath and pick up system

A. Leder | DM Radio 50 L | April APS Meeting | April 18, 2021 | email: aleder@berkeley.edu
48

Scans of pickup 
dimensions on axion 
coupling efficiency  

Maximum 
signal 
efficiency 
occurs when 
pickup 
maximally 
fills out 
center region



     Resonator Q Optimization

• We have also looked into a variety of 
LC resonator designs


• For full details - see Singh talk later in 
this session (K19.00004)


• Resonator circuit model allow us to 
minimize losses while still maximizing 
Q across multiple frequencies


• Proposed designs will then be tested 
with a dip probe at 4K

A. Leder | DM Radio 50 L | April APS Meeting | April 18, 2021 | email: aleder@berkeley.edu
49

Scan of 
possible LC 
combinations 
and their 
resulting 
impedance/
resonance



     Cryogenic Cooling

• Work Performed by Maria 
Simanovskaia


• Cool down profiles have been 
simulated in ANSYS 


• Not all components have to be cooled 
all the way down to base temperature


• Looking into designs that can be 
cooled in less than a week


• Biggest constraint is the available 
cooling power from the pulse tubes

A. Leder | DM Radio 50 L | April APS Meeting | April 18, 2021 | email: aleder@berkeley.edu
50



     Current Status of DMR 50 L

• Construction has begun on the 
individual components of DMR 
50L - for example the magnet


• Experimental verification of 
sims/final design studies will 
take place over 2021


• Data taking scheduled to take 
place in ~ 2022

A. Leder | DM Radio 50 L | April APS Meeting | April 18, 2021 | email: aleder@berkeley.edu
51



     Summary/Conclusion

• We are on track to deliver a fully optimized 
from the ground up 50L detector design 
for lower mass axion searches 


• We have embarked on a series of 
simulation/modeling campaigns to 
minimize all possible losses while still 
maximizing SNR


• Simulation verification with data underway


• Construction has started with data taking 
to begin in ~ 2022

A. Leder | DM Radio 50 L | April APS Meeting | April 18, 2021 | email: aleder@berkeley.edu

Parameter Design 
RangeSearch 

Region
5 kHz - 5 MHz

Scan Time 3 years
Sensitivity 

Goal
5e-15 1/GeV



APS April Meeting April 18, 2021

• DMRadio-50L 
• Demonstration of magnet + resonator

• Search for Axion-like particles

• 20 peV < ma < 20 neV (5 kHz < νa < 5 MHz)

• gaγγ < 5∙10-15 GeV-1


• Beginning Construction


• 3-year scan starting in ~2022

• Afterwards: Next generation sensors


• DMRadio-m3 
• Probing QCD axion models

• 20 neV < ma < 800 neV                                  (5 

MHz < νa < 200 MHz)

• DFSZ axion sensitivity above 100 neV         (30 

MHz)

• Design funded by DOI New Initiatives Program


• PreCDR in preparation

• 5-year scan time starting in ~2025

Summary
Sensitivity and Timescales

53
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