HAYSTAC

HAYSTAC: a Haloscope At Yale Sensitive To Axion Cold dark matter

CIPANP conference September 2nd, 2022 california elliance

Alexander Leder University of California Berkeley aleder@berkeley.edu This talk is designed to give a broad overview of the various HAYSTAC results and the current R&D projects currently underway

- Introduction to Axion Dark Matter
- Overview of the HAYSTAC experiment
- Summary of Phase 1/2 Results
- Current R&D projects
- Summary/Conclusion

Dark Matter Theories

and the second states of the

.4

This is a very active area of research
With so few concrete requirements for any DM candidate you can easily create any number of particles that can fit the bill

HAYSTAC

.

Dark Matter Searches so Far

- For many years one of the dominant DM candidates was the WIMP
- This was very low hanging fruit that could be easily probed with state-of-the-art detectors as those shown in this session
- A lot of the interesting parameter space has been explored
- Other DM candidates have recently gained interest from the community

Axions as DM Candidate

- Axions represent a new class of ultra light (high number density) DM candidates
- They check off many of the requirements for a DM candidate:
 - Cold (non-relativistic)
 - Stable
 - Feeble interaction strength
 - Production mechanisms possible in early universe
 - Naturally come about via Peccei Quinn solution to strong CP problem

Axions as DM Candidate

7

- Very open parameter space
- We need to probe across all 12+ orders of magnitude of possible axion masses
- You can no longer use traditional particle physics detection techniques to search for axions
- Low mass however equals high number density

Axion Dark Matter Detection

- In the case of Axions:
 - Axions only sometimes convert into photons in the presence of an external magnetic field
 - The rate is proportional to the magnetic field and the axion's coupling strength
 - Axions are also extremely light and slow, so there is very little energy to start with
- So let us start with a sealed metal cavity in a uniform external magnetic field
- In this cavity you have intrinsic EM modes that fill the volume

Cavity Based Axion Searches

- For maximum energy transferal you want your detector to as closely match the mass/energy of the incoming particle
- The Axion has a uniform energy profile so we need to look at the EM modes that most nearly resemble a uniform field
- However; boundary conditions make this impossible to achieve everywhere

9

Scale of Axion Experiments

ADMX experiment Mass range: ~ 0.6 GHz Lower frequency means larger cavity, complex cryogenic infrastructure ADMX and HAYSTAC bracket the frequency range that can be accessed through cavity based experiments

HAYSTAC experiment Mass range: ~ 5.2 GHz Smaller cavity, easier to cool and install, potentially some loss of sensitivity

HAYSTAC

HAYSTAC Collaboration

The HAYSTAC Collaboration is made up of four institutions

UC Berkeley

Alexander Droster

Alexander Leder

Heather Jackson

MacKenzie Wooten Karl van Bibber Yale University

Sidney Cahn Mike Jewell Huaijin (Jean) Wang Ling Zhong Steve Lamoreaux Reina Maruyama

Johns Hopkins

Danelle Speller

HEISING-SIMONS

CU Boulder

Mehmet Anil Maxime Malnou Kelly Wurtz *Konrad Lehnert*

HAYSTAC

With support from:

Probing Axions with HAYSTAC

- Cavity based experiments measure the coupling between a DC external magnetic field and the axion
- Inside a a tunable cavity, we can search for a excess in signal power at resonance of detector
- Searches seek to find small energy deposition in power spectrum
- Requires low temperature/noise environments

HAYSTAC Experimental Setup

Ning 2 Cold

In order to probe the most DM parameter space in the shortest time we need:

- Large magnetic field (9 Tesla)
- Low temperature (127 mK)
- Low noise environment (2.3 quanta)
- Good Form Factor ($C_{010} \sim 0.5$)

HAYSTAC

- High Q (1e4)
- Large Volume (1.5 L)

Cooling down the Experiment

- It is absolutely vital that the whole experiment gets cooled down to as low of a temperature as possible
 - Cool superconducting magnet
 - Minimize noise on our readout electronics
- Remember that we are looking at power deposited in our cavity region
- Anything hotter than our readout will radiate photons that can also deposit power

HAYSTAC Infrastructure

- New BlueFors dilution refrigerator installed at Yale
- New variable temperature stage
- Improved cavity support structure
- Software upgrades

HAYSTAC Experiment Timeline

.....

Maria Maria

HAYSTAC Phase I - Hot Rod

- HAYSTAC designed to provide a platform for new cavity and amplifier technologies in the 3-12 GHz range
- Phase I implemented first solution to the hot rod problem
- Solution tested to ensure minimum effect on Q of cavity

HAYSTAC

18

HAYSTAC Phase I - Noise Level

- Run 2 of Phase I achieved noise level
 2 times the standard quantum limit
- This was possible thanks in part to solving the hot rod rod problem
- The problem still remains though

HAYSTAC Phase I - Results

Highest frequencies/masses probed by a cavity experiment so far!

HAYSTAC

Maria Carl

HAYSTAC Phase II - Squeezed State

- We have been able to demonstrate the first squeezed state receiver in a microwave cavity
- Improvement in SNR has been shown uniformly across a large bandwidth

HAYSTAC Phase II - Squeezed State

- Phase II implemented new squeezed state receivers to further improve performance
- We have seen a factor of 2.1 improvement in the scan rate with benchtop tests using injected test axion signals

HAYSTAC Phase II - Results

Put it all together....

Phase I shows the full range of the HAYSTAC experiment

HAYSTAC

• Phase II shows the potential of squeezers

the second second

Moving Forward

 ADMX and HAYSTAC have shown the sensitivity range of cavity based axion searches

HAYSTAC

 Outside of this range the engineering constraints present a problem

Present and Future Projects

Moving Forward

- We are actively analyzing Phase IIb data now
 - We paid particular attention to finding a way to thermally connect the tuning rod without losing cavity performance

Also performed a series of mock cool downs to test thermalization on a test piece

Current R&D Efforts- Multi-rod Cavity

- HAYSTAC is a testbed for new techniques to probe higher frequency (read mass) axion models
- Symmetric tuner has a superior form factor compared to asymmetric tuning mechanisms
- 7-rod cavity has been constructed and plated and is undergoing additional testing at Berkeley

Current R&D Efforts- Photonic Band Gap (PBG)

- Other frequency modes create a forest of mode that can hybridize, reducing the overall form factor
- PBGs are a regular lattice of rods that contain a specific mode in their center region
- Other modes freely propagate out - clear out intruder modes

Conclusion

- The HAYSTAC experiment has demonstrated the highest frequency sensitivity for cavity axion searches and has successfully implemented squeezing in an axion experiment
- There is lots of exciting R&D underway to further expand the frequency reach of cavity based experiments
 HAYSTA

Any additional questions: aleder@berkeley.edu

Thank you for your attention

Axions as DM Candidate

HAYSTAC

.34

Maria Barris

Finding yourself in a Squeeze

- What is squeezing?
- The Heisenberg UC principal is always valid
- Start with a general quantum mechanical state that always satisfies the HUC principal
- You can create a series of mathematical operations on this wave function that inversely affect the UC in pos/momentum

$$\Delta x \Delta p = \frac{\hbar}{2}$$

$$\Psi(x) = C_0 exp(-\frac{(x-x_0)^2}{2\omega_0^2} + ip_0 x)$$

$$\zeta = r e^{-i\theta}$$
$$(\Delta x_{\Psi})^2 = \frac{e^{-2\zeta}}{2m\omega}$$
$$(\Delta p_{\Psi})^2 = \frac{m\omega e^{+2\zeta}}{2}$$

Finding yourself in a Squeeze

- Now we can create a state where we are in control of the uncertainty in either the position or momentum
- You can do this for any pair of commuting variables, including Energy/Time

$$(\Delta x_{\Psi})^2 = \frac{e^{-2\zeta}}{2m\omega}$$
$$(\Delta p_{\Psi})^2 = \frac{m\omega e^{+2\zeta}}{2}$$

Finding yourself in a Squeeze

- If you then draw out the resulting wave functions you can then pick one:
 - High degree of certainty about the amplitude (energy) of the wave
 - OR

a left winds in the second

.37

- High degree of certainty about phase (timing) of the wave
- On HAYSTAC we don't care as much about when the axion interacted

Squeezing implies uniformly higher S/N over a wider bandwidth

The scan rate with squeezing optimizes at large overcoupling of the cavity, thus higher BW

Corresponding factor of 2.12 speedup in scan rate demonstrated

- Mock axion search conducted on the JILA testbed
- Synthetic signal injected into the system of unknown frequency
- Search protocol repeated 200 times for each configuration, data plotted in terms of their standard deviation
- □ Results are $\mu_s = 6.05 \pm 0.07$ (with squeezing), $\mu_s = 4.15 \pm 0.07$ (w/o), leading to 2.12 ± 0.08 speedup
- HAYSTAC commissioning has now demonstrated squeezing
- JILA working on x10 speedup

Photonic Band Gap (PBG) background

Basic definition

- Periodic lattice of metal and/or dielectric rods with an open boundary
- Band gap behavior: certain frequencies cannot propagate through lattice ("disallowed")

Creation of a PBG resonator

- Defect in lattice confines "disallowed" modes
- All other modes propagate out
- Our case: confine TM modes, not TE modes

	500	

Aluminum prototype "stock" lattice

Prototype goals

- Investigate tuning:
 - Single tuning rod in defect (same as HAYSTAC cavity)
 - Tuning range: 7.4 to 9.4 GHz
- Study fabrication possibilities:
 - Alignment/tolerances
 - Assembly options
 - Try plating

41

Aluminum prototype "stock" lattice

Low noise amplification with Josephson parametric amplifiers

Optimization Campaign

- The DM Radio 50 L campaign has multiple components that all have to be simultaneously co-optimized
- This is an iterative process, where individual calculations build upon each other
- Here we are going to talk about the main 5 campaigns that have gone into the design of the 50 L experiment
- Experience will inform m³ design as well - see other talks in section

A. Leder | DM Radio 50 L | April APS Meeting | April 18, 2021 | email: aleder@berkeley.edu

Magnet Design

Parameter	Design Goal
Peak Field	0.1-1 Tesla
Max Fringe	100 mTesla
Science	50 Liters

- Stray fields must be kept low to avoid driving superconducting components normal
- Design for operation at higher fields built in
- Magnet design finalized and submitted to SSI for delivery by end of 2021

A. Leder | DM Radio 50 L | April APS Meeting | April 18, 2021 | email: aleder@berkeley.edu

Simulating Sheath Modes

- Work performed by Alex Droster utilizing HFSS simulations
- Two goals:
 - Find the lowest order racetrack modes inside the sheath
 - Minimize coupling between pickup loop and lossy materials
- A variety of sheath materials/coatings were also tested and shown only to contribute minority to coupling losses

Sheath/Pickup Signal Coupling

- Work performed by Chiara Salemi
- Simulations have scanned across a wide variety of dimensions for both the sheath and pickup
- Submitted design have been optimized for maximum coupling between axion and sheath and sheath and pick up system

Resonator Q Optimization

• We have also looked into a variety of LC resonator designs

- For full details see Singh talk later in this session (K19.00004)
- Resonator circuit model allow us to minimize losses while still maximizing Q across multiple frequencies
- Proposed designs will then be tested with a dip probe at 4K

Cryogenic Cooling

- Work Performed by Maria Simanovskaja
- Cool down profiles have been • simulated in ANSYS
- Not all components have to be cooled all the way down to base temperature
- Looking into designs that can be • cooled in less than a week
- Biggest constraint is the available • cooling power from the pulse tubes

Current Status of DMR 50 L

51

- Construction has begun on the individual components of DMR 50L - for example the magnet
- Experimental verification of sims/final design studies will take place over 2021
- Data taking scheduled to take place in ~ 2022

Summary/Conclus

- We are on track to deliver a fully optimized from the ground up 50L detector design for lower mass axion searches
- We have embarked on a series of simulation/modeling campaigns to minimize all possible losses while still maximizing SNR
- Simulation verification with data underway
- Construction has started with data taking to begin in ~ 2022

A. Leder | DM Radio 50 L | April APS Meeting | April 18, 2021 | email: aleder@berkeley.edu

Sensitivity and Timescales

Summary

- DMRadio-50L
 - Demonstration of magnet + resonator
 - · Search for Axion-like particles
 - 20 peV < m_a < 20 neV (5 kHz < v_a < 5 MHz)
 - $g_{a\gamma\gamma} < 5 \cdot 10^{-15} \text{ GeV}^{-1}$
 - Beginning Construction
 - 3-year scan starting in ~2022
 - Afterwards: Next generation sensors

• DMRadio-m³

- Probing QCD axion models
- 20 neV < m_a < 800 neV MHz < v_a < 200 MHz)
- DFSZ axion sensitivity above 100 neV MHz)
- Design funded by DOI New Initiatives Program
 - PreCDR in preparation
- 5-year scan time starting in ~2025

