

Max-Planck-Institut für extraterrestrische Physik

N-Point Statistics of Large-Scale Structure and Parity-Violation Search

CIPANP August 31 2022

Jiamin Hou

Marie Curie Fellow at the University of Florida (with support from the Max Planck Institute for Extraterrestrial Physics)

Max-Planck-Institut für extraterrestrische Physik

N-Point Statistics of Large-Scale Structure and Parity-Violation Search

Zachary Slepian (UF)

Robert Cahn (Berkeley)

Jiamin Hou Marie Curie Fellow at the University of Florida (with support from the Max Planck Institute for Extraterrestrial Physics)

Information in Galaxies' 3D distribution

- Map the expansion history
- Probe growth of cosmic structure
- Origin of the Universe

- Standard cosmological paradigm
 - Inflation
 - **Cosmological constant**
 - CDM

redshift

Information in Galaxies' 3D distribution

- Map the expansion history
- Probe growth of cosmic structure
- Origin of the Universe

- Standard cosmological paradigm
 - Inflation
 - Cosmological constant ?
 - ? CDM

redshift

A. Raichoor, A.J. Ross, and SDSS collaboration

Lya-Forest 2.1 < z < 3.5

SDSS I-II + BOSS + eBOSS (1998-2019)

• 300k Luminous Red Galaxies (LRGs) 0.6 < z < 1.0

• 200k Emission Line Galaxies (ELGs) 0.7 < z < 1.1

A. Raichoor, A.J. Ross, and SDSS collaboration

Lya-Forest 2.1 < z < 3.5

SDSS I-II + BOSS + eBOSS (1998-2019)

• 300k Luminous Red Galaxies (LRGs) 0.6 < z < 1.0

• 200k Emission Line Galaxies (ELGs) 0.7 < z < 1.1

A. Raichoor, A.J.Ross, and SDSS collaboration

Lya-Forest 2.1 < z < 3.5 SDSS I-II + BOSS + eBOSS (1998-2019)

• 300k Luminous Red Galaxies (LRGs) 0.6 < z < 1.0

• 200k Emission Line Galaxies (ELGs) 0.7 < z < 1.1

$\xi(\mathbf{r}) \equiv \langle \delta(\mathbf{x}) \delta(\mathbf{x} + \mathbf{r}) \rangle$

$$\delta(\mathbf{x}) = \rho(\mathbf{x})/\bar{\rho} - 1$$

Recent Developments in 2-Point Statistics

Stage III Stage II

Stage II: WMAP, JLA SN, SDSS DR7 (2010)

Stage III: Planck, Pantheon SNe Ia, DES (2020)

Information in higher-order statistics?

• Gaussian initial conditions

Image: Millenium Simulation Project

Time

- Nonlinearities are not fully captured by 2-point statistics
- Unique window on different inflationary models
- Break parameter degeneracies

3

- **ACDM**

Gaussianity

NPCFs in the Isotropic Basis

$$\begin{aligned} \zeta(\mathbf{R}) &\equiv \left\langle \prod_{i} \delta\left(\mathbf{r}_{i}\right) \right\rangle = \sum_{\Lambda} \zeta_{\Lambda}(R) \mathcal{P}_{\Lambda}(\hat{R}) \\ \mathbf{R} &= \left\{ \mathbf{r}_{1}, \mathbf{r}_{2}, \dots, \mathbf{r}_{n-1} \right\} \\ \mathcal{P}_{\Lambda}(\hat{R}) &= \sum_{M} \mathcal{C}_{M}^{\Lambda} \prod_{i} Y_{\ell_{i}m_{i}} \\ \bullet & \mathcal{C}_{M}^{\Lambda} = \mathcal{E}(\Lambda) \sqrt{2\ell_{12} + 1} \times \dots \times \sqrt{2\ell_{12} \dots N - 3} + 1 \\ & \times \sum_{m_{12}\dots} (-1)^{\kappa} \left(\begin{array}{cc} \ell_{1} & \ell_{2} & \ell_{12} \\ m_{1} & m_{2} & -m_{12} \end{array} \right) \dots \left(\begin{array}{cc} \ell_{12\dots N - 3} & \ell_{N-2} & \ell_{N-1} \\ m_{12\dots N - 3} & m_{N-2} & m_{N_{1}} \end{array} \right) \end{aligned}$$

- Complete orthonormal basis
- Given isotropy:
 - •An efficient approach to sort information
- Separable angular basis:
 - offers a speed boost to measure it

Cahn and Slepian, arXiv: 2010.14418

Efficient N-point Correlator Estimation (ENCORE)

- Algorithm based on Slepian & Eisenstein 2015
- Survey geometry induces angular momentum coupling
 - Edge-correction is included
- "Connected-only" estimator

 $\zeta\left(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}\right)=\xi\left(\mathbf{r}_{1}\right)$

1)
$$\xi$$
 (**r**₂ - **r**₃) + cyc. + $\zeta^{(c)}$ (**r**₁, **r**₂, **r**₃)

Philcox, Slepian, JH, Cahn, Warner, Eisenstein arXiv: 2105.08722

GPU for N-point Correlator Estimation (CADENZA)

GPU vs. single thread CPU

CADENZA: Slepian, Warner, Hou, Cahn in prep.

First Detection of Gravitationally-induced Gaussianity with BOSS data using 4PCF

Parity Violation with the 4PCF of LSS

- A tetrahedron and its mirror image cannot be superimposed in 3D.
- The 4PCF is the lowest order statistics sensitive to parity violation.

 $\mathcal{P}_{\ell_1\ell_2\ell_3}\left(-\hat{\mathbf{r}}_1,-\hat{\mathbf{r}}_2,-\hat{\mathbf{r}}_3\right) = (-1)^{\ell_1+\ell_2+\ell_3} \mathcal{P}_{\ell_1\ell_2\ell_3}\left(\hat{\mathbf{r}}_1,\hat{\mathbf{r}}_2,\hat{\mathbf{r}}_3\right)$

An "imagined" mirror

 \mathbf{r}_2

 $r_1 < r_2 < r_3$

r

r₃

Cahn, Slepian, JH 2021

Parity Violation on Cosmological Scale

- Standard single-field inflation preserves parity Gravity is parity-conserving
 - Sources for parity violation?
 - Chern-Simons like interaction
 - Primordial vorticity (Vilenkin 1978)

 - String-sourced perturbations (Pogosian & Wyman 2008)

• e.g. axion coupled to gauge field (Kim+ 2005, Namba+ 2015)

Broken symmetry during phase transition (G.'t Hooft 1974, Quashnock+1989; Baym+1996)

A Toy Simulation for the Parity-Odd 4PCF

$$\mathcal{P}_{111}(\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}, \hat{\mathbf{r}}_{3}) = -i\frac{3}{\sqrt{2}}(4\pi)^{-3/2} \hat{\mathbf{r}}_{1} \cdot (\hat{\mathbf{r}}_{2} \times \hat{\mathbf{r}}_{3}),$$

$$\mathcal{P}_{122}(\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}, \hat{\mathbf{r}}_{3}) = i\sqrt{\frac{45}{2}}(4\pi)^{-3/2} \hat{\mathbf{r}}_{1} \cdot (\hat{\mathbf{r}}_{2} \times \hat{\mathbf{r}}_{3}) (\hat{\mathbf{r}}_{2} \cdot \hat{\mathbf{r}}_{3}),$$

$$\mathcal{P}_{133}(\hat{\mathbf{r}}_{1}, \hat{\mathbf{r}}_{2}, \hat{\mathbf{r}}_{3}) = -i\frac{15}{4}\sqrt{7}(4\pi)^{-3/2} \hat{\mathbf{r}}_{1} \cdot (\hat{\mathbf{r}}_{2} \times \hat{\mathbf{r}}_{3}) \left[(\hat{\mathbf{r}}_{2} \cdot \hat{\mathbf{r}}_{3}) \right]$$

A Toy Simulation for the Parity-Odd 4PCF

 $P_{111}(\hat{r}_1, \hat{r}_2, \hat{r}_3) \propto -i\hat{r}_1 \cdot (\hat{r}_2 \times \hat{r}_3)$

Measurement of Parity-Odd Modes in the 4PCF of SDSS BOSS DRI2 CMASS and LOWZ

Gaussian analytic covariance • Statistical fluctuation estimation < • Compressed data vector¹ • Direct: reduced d.o.f.

Systematics study

Challenges

- Survey-related effects
- Observer-induced effects
- Algorithm-related effects

Statistical fluctuation estimation Compressed data vector¹

Systematics study

Challenges

- Gaussian analytic covariance
- - Direct: reduced d.o.f.
 - Survey-related effects
 - Urvey - Observer-induced effects
 - Procedure/Algorithm-related effects

Detection significance in the CMASS sample

CMASS, 18 bins, $\ell_{max} = 4$

JH, Slepian, Cahn 2022

Potential question list and implications

Correlation across NGC/SGC

- ➡ Additional data variance

• • •

Consistency between CMASS and LOWZ

Open an avenue to study P.V. with LSS

Next steps

- Dark Energy Spectroscopic Instrument (DESI)
 - Started 5-year survey on May 17, 2021
 - Collected ~18 M galaxies' spectra (2.7 M LRGs)
- Models for parity-odd signal
- Simulations with parity-violating mechanism
- Residual systematics

Main/DARK : 2735/9929 (=28%) done tiles up to 20220609

Next-stage Galaxy Surveys

Vera Rubin Observatory

Large Synoptic Survey Telescope

