

LFU and other anomalies in b-hadron decays Carla Marin

on behalf of the LHCb collaboration + results from Belle (II)

Overview

• Rare b-hadron decays

• Recent results

- Branching ratios (BR)
- Angular observables
- Lepton Flavour Universality (LFU)

• Prospects

Rare $b \rightarrow sll decays$

- Flavour-Changing Neutral-Currents sensitive to indirect effects of New Physics (NP) in loops
- Access to much larger scales than direct searches
- Tests of couplings to 3rd generation b-quarks

Effective Hamiltonian

Model independent description of $b \rightarrow sll$ decays:

Observables

- Phenomenology perspective
 - **BR**: affected by hadronic uncertainties

• Angular observables: first-order form-factor cancellations

• **LFU**: full cancellations in the SM

Observables

Phenomenology perspective

• **BR**: affected by hadronic uncertainties

• Angular observables: first-order form-factor cancellations

• LFU: full cancellations in the SM

Experimental perspective

- **BR**: simple extraction, good control of efficiencies through control modes
- Angular observables: need to control acceptance, many parameters require large yields
- LFU: need control of e[±] vs µ[±] efficiencies - very challenging at hadron machines

Experiments: b-physics

- pp collisions: high background
- 3+6fb⁻¹: all species (σ_{B+}~43/87µb) @7/13 TeV)
- forward spectrometer
- excellent PID, momentum, IP performance

- e⁺e⁻ collisions: very clean environment
- 1 ab^{-1} + 400 fb⁻¹: B^{0} , B⁺ (B_s) ($\sigma_{B} \sim 10^{9}/ab^{-1}$)
- hermetic detector, large coverage
- excellent PID, tagging power

Branching ratios

Trend: $b \to s \mu^+ \mu^-$ BR systematically lower than SM predictions

Branching ratios

Trend: $b \rightarrow s\mu^+\mu^-$ BR systematically than SM predictions

Angular observables

Range of observables sensitive to different WCs

$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \left.\frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2\mathrm{d}\vec{\Omega}}\right _{\mathrm{P}} = \frac{1}{3}$	$\frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_{\rm L}) \sin^2 \theta_K + F_{\rm L} \cos^2 \theta_K$
	$+rac{1}{4}(1-F_{ m L})\sin^2 heta_K\cos2 heta_l$
	$-F_{\rm L}\cos^2\theta_K\cos2\theta_l+S_3\sin^2\theta_K\sin^2\theta_l\cos2\phi$
$B_d \rightarrow K^* \mu^+ \mu^-$	$+S_4\sin 2\theta_K\sin 2\theta_l\cos\phi + S_5\sin 2\theta_K\sin\theta_l\cos\phi$
[Altmannshofer et al.]	$+\frac{4}{3}A_{\rm FB}\sin^2\theta_K\cos\theta_l + S_7\sin2\theta_K\sin\theta_l\sin\phi$
	$+S_8\sin 2\theta_K\sin 2\theta_l\sin \phi + S_9\sin^2 \theta_K\sin^2 \theta_l\sin 2\phi$

F₁: H longitudinal polarisation

A_{FB}: di-lepton forward-backward asymmetry

S_i: CP-averaged observables

"Clean" basis: cancellation of Form Factors at leading order [Descotes-Genon et al.]

$$P_5' = S_5 / \sqrt{F_{\rm L}(1 - F_{\rm L})}$$

Angular analysis of $B^0 \rightarrow K^* \mu^+ \mu^-$

PRL 125 (2020) 011802

Most precise by LHCb: Run 1 + 2016 data

2.7 - 3.3 σ preference for NP with negative C₉^{NP}

<u>JHEP 11 (2021) 043</u>

Angular analysis of $B_s^{\ 0} \rightarrow \phi \mu^* \mu^-$

Only LHCb, uses full dataset

 \blacktriangle CP asymmetries in untagged rate: indistinguishable B_s and \overline{B}_{s} decays

Compatible with SM but preference for negative C_{q}^{NP} at 1.9 σ

Lepton Flavour Universality tests

Leptons of different species couple identically to electroweak bosons in SM \rightarrow Lepton Flavour Universality (LFU)

Measure ratio of same b \rightarrow sll process with muons and electrons in final state:

$$R_{H} \equiv \frac{\int \frac{d\Gamma(B \rightarrow H\mu^{+}\mu^{-})}{dq^{2}} dq^{2}}{\int \frac{d\Gamma(B \rightarrow He^{+}e^{-})}{dq^{2}} dq^{2}} \qquad \mathrm{H} = \mathrm{K}^{*}, \, \mathrm{K}^{\mathrm{O}*}, \, \mathrm{K}^{\mathrm{O}}_{\mathrm{S}}, \, \mathrm{K}^{\mathrm{O}+} \dots$$

Hadronic uncertainties cancel in ratio → very clean theory prediction

$b \rightarrow sll$ with electrons

A challenge at LHCb

Much more similar to muons at Belle

PRL 126 161801 (2021)

$b \rightarrow sll$ with electrons at LHCb

Hardware trigger

Larger ECAL occupancy \rightarrow tighter thresholds for electrons:

- e p_T > 2700/2400 MeV in 2012/2016
- μ p_T > 1700/1800 MeV in 2012/2016 [LHCb-PUB-2014-046, 2019 JINST 14 P04013]

Mitigate with events triggered independently of the signal (TIS) (and hadron trigger)

Interaction with detector material

Electrons radiate much more Bremsstrahlung

Recovery procedure in place

- miss some photons and add fake ones
- ECAL resolution worse than tracking
- \rightarrow worse mass resolution for electron modes

How do we measure LFU at LHCb?

$$R_{H}=rac{BR(B
ightarrow H\mu^{+}\mu^{-})}{BR(B
ightarrow He^{+}e^{-})}$$

In SM:

 $R_K = 1.0000 \pm 0.0001$ [Bordone et al.]

Experimentally:

$$R_{H}= rac{N(B
ightarrow H\mu^{+}\mu^{-})}{N(B
ightarrow He^{+}e^{-})} imes rac{\epsilon(B
ightarrow He^{+}e^{-})}{\epsilon(B
ightarrow H\mu^{+}\mu^{-})}$$

from mass fit from MC and calibration samples

Exploit the well tested LFU in J/ ψ modes

$$r_{J/\psi} = rac{BR(B o HJ/\psi(\mu^+\mu^-))}{BR(B o HJ/\psi(e^+e^-))} = 1$$

- as stringent cross-check
- to build double ratio at LHCb → cancel systematic effects

$$R_{H} = rac{N(B
ightarrow H\mu^{+}\mu^{-})}{N(B
ightarrow HJ/\psi(\mu^{+}\mu^{-}))}} imes rac{\epsilon(B
ightarrow He^{+}e^{-})}{\epsilon(B
ightarrow HJ/\psi(e^{+}e^{-}))}} rac{\epsilon(B
ightarrow He^{+}e^{-})}{\epsilon(B
ightarrow HJ/\psi(e^{+}e^{-}))}}$$

$\mathbf{R}_{\mathbf{K}}$ with full LHCb data

Stringent cross-checks with $B^{*} \rightarrow J/\psi \; K^{*}$

• shows that even absolute electron and muon efficiencies are understood

 $r_{J/\psi} = 0.981 \pm 0.020$

constraint m(ll) to J/ ψ mass \rightarrow strong improvement of mass resolution

$\mathbf{R}_{\mathbf{K}}$ with full LHCb data

Check phase-space dependency: trends and $B^{\scriptscriptstyle +} \to \psi(2S)~K^{\scriptscriptstyle +}$ decays

Effect of simulation corrections is small thanks to the double ratio:

- R_K: (+3 ± 1)%
- R_{J/ψ}: 20%

R_K with full LHCb data

Measurement in 1.1 < q^2 < 6.0 GeV² with Run 1+2 datasets R_K from simultaneous fit to B⁺ \rightarrow K⁺ $\mu^+\mu^-$ and B⁺ \rightarrow K⁺ e^+e^- candidates

$\mathbf{R}_{_{\!\!\mathbf{K}}}$ and $\mathbf{R}_{_{\!\!\mathbf{K}^*}}$ with neutral Kaons

Isospin partners $B^0 \rightarrow K^0_{\ S} I^+I^-$ and $B^+ \rightarrow K^{*+} I^+I^-$

- only explored by Belle/BaBar before, more challenging at LHCb
- no unambiguous observation of electron modes by any experiment

Use full dataset and follow R_{κ} strategy, with some particularities:

- reconstruct $K^0_{\ s} \rightarrow \pi^+\pi^-$ and $K^{*+} \rightarrow K^0_{\ s}\pi^+$
- reconstruct K⁰ from long and downstream tracks
- still smaller yields due to long-lived K⁰_s

 \mathbf{I} Data 9 fb⁻¹

 $\cdots B^+ \rightarrow K^{*+} \mu^+ \mu^-$

Comb. Back.

5600

— Total

I Data 9 fb^{−1}

 $\cdots B^+ \rightarrow K^{*+} e^+ e^-$

Comb. Back.

Part. Reco. K

5500

 $B^+ \rightarrow K^{*+} \pi^+ \pi^-$

 $B^+ \rightarrow J/\psi(e^+e^-) K^{*-}$

21

6000

- Total

R_{ν} and $R_{\nu*}$ with neutral Kaons

Separate fits to B⁰ and B⁺ decays, simultaneous for muons and electrons

Overview of LHCb LFU measurements

Working on final results with full Run 2 data

Unified analysis of $\rm R_{K}$ and $\rm R_{K^{*}}$ ongoing

- Final Run 1 + 2 results
- Deeper understanding LFU
- High priority for collaboration

Updates and new measurements:

• R_{pK} full Run 1+2

• R'_{φ} , $R_{K\pi\pi}$, etc.

Results from Belle

Weighted average of charged and neutral modes in various q² bins:

Results compatible with SM and LHCb measurements Statistically limited \rightarrow looking forward Belle II results!

Future prospects for LFU tests at LHCb

LHC schedule:

- Run 3: 2022 2025 \rightarrow LHCb upgraded
- Run 4: 2028 2030
- Run 5 (HL-LHC): > 2032 \rightarrow LHCb Upgrade II

		Run 3	Run 4	Upgrade II
R_X precision	$9\mathrm{fb}^{-1}$	$23 \mathrm{fb}^{-1}$	$50 {\rm fb}^{-1}$	$300 {\rm fb}^{-1}$
R_K	0.043	0.025	0.017	0.007
$R_{K^{*0}}$	0.052	0.031	0.020	0.008
R_{ϕ}	0.130	0.076	0.050	0.020
R_{pK}	0.105	0.061	0.041	0.016
R_{π}	0.302	0.176	0.117	0.047

Prospects for Belle II

First b \rightarrow sll and r_{J/ ψ} results w/ 189 fb⁻¹, looking forward to LFU tests

Observable	Belle II	Belle (2021)
$R_{K^+}(J/\psi)$	$1.009 \pm 0.022 \pm 0.008$	$0.994 \pm 0.011 \pm 0.010$
$R_{K^0_{ m S}}(J/\psi)$	$1.042\pm 0.042\pm 0.008$	$0.993 \pm 0.015 \pm 0.010$

Belle II Physics Book

arXiv:2207.11275

Summary & conclusions

Rare b \rightarrow sll decays provide stringent tests of NP

- Interesting tensions in $b \rightarrow sll$ transitions could be a hint of NP
- Latest results cannot confirm neither deny them
- Updates with more data and new modes under development
 - Precise results from other experiments awaited

Interpretation of results: talks by <u>P. Stangl</u>, <u>M. Fedele</u> and <u>W. Altmannshofer</u> Many other studies of rare b-hadron decays: see talks by <u>G. Frau</u> and <u>L. Martel</u>

Stay tuned!

Thanks for the attention

Experimental setup: LHCb

 $\Delta p / p = 0.5 - 1.0\%$ $\Delta IP = (15 + 29/p_T[GeV]) \mu m$

 $\Delta E/E_{ECAL} = 1\% + 10\% / \sqrt{(E[GeV])}$

Electron ID ~90% for ~5% $h \rightarrow e^{\pm}$ mis-id probability

Muon ID ~ 97% for 1-3% $\pi{\rightarrow}\mu$ mis-id probability

$b \rightarrow sll BR at Belle$

 $B \rightarrow K^* l^+ l^-$

$\mathbf{R}_{_{\!\!\mathbf{K}}}$ and $\mathbf{R}_{_{\!\!\mathbf{K}^*}}$ with neutral Kaons

Separate fits to B⁰ and B⁺ decays, simultaneous for muons and electrons

Electron mode significance of 5.3 and $6.0\sigma \rightarrow$ 1st observation

e[±] misId backgrounds are included in the fits

dB/dq² measured for first time in electron modes, in q² bins [1.1, 6.0] and [0.045, 6.0] GeV^2/c^4

$$\frac{\mathrm{d}\mathcal{B}\left(B^0 \to K^0 e^+ e^-\right)}{\mathrm{d}q^2} = (2.6 \pm 0.6 \,(\mathrm{stat.}) \pm 0.1 \,(\mathrm{syst.})) \times 10^{-8} \,\,\mathrm{GeV}^{-2} c^4$$

$$\frac{\mathrm{d}\mathcal{B}\left(B^{+} \to K^{*+}e^{+}e^{-}\right)}{\mathrm{d}q^{2}} = \left(9.2^{+1.9}_{-1.8}\,(\mathrm{stat.})^{+0.8}_{-0.6}\,(\mathrm{syst.})\right) \times 10^{-8} \,\,\mathrm{GeV}^{-2}c^{4}$$

$\mathbf{R}_{\mathbf{K}}$ with full LHCb data

Cannot apply J/ ψ mass constraint to rare mode \rightarrow worse resolution \rightarrow larger backgrounds for electron mode. Dedicated vetoes to minimise them.

Stringent cross-checks with $B^+ \rightarrow J/\psi \ K^+$ and $B^+ \rightarrow \psi(2S) \ K^+$ decays

Constraint m(ll) to J/ ψ or ψ (2S) mass \rightarrow strong improvement of mass resolution

Nature Physics 18, (2022)

277-282

R_{K} : $r_{J/\psi}$ cross-checks

Detailed study of systematic uncertainties:

Fit model	1%
Calibration sample size	1%
Trigger, PID and B kinematics calibration	< 0.1%
q ² distribution and resolution	negligible

R_K: significance

