PRECISION COSMOLOGY WITH GRAVITATIONAL WAVE OBSERVATIONS

INTERSECTIONS IN PARTICLE AND NUCLEAR PHYSICS AUGUST 29-SEPTEMBER 4, 2022

B.S. Sathyaprakash Penn State University, USA and Cardiff University, UK

WHY ARE BLACK HOLE AND NEUTRON BINARY MERGERS STANDARD SIRENS?

Schutz: 1986

- A standard candle requires uncorrupt and unbiased measurement of apparent *F* and absolute luminosities *L* of a source:
 - Unbiased: we know the physical model "exactly"
 - General relativity is THE physical model
 - Uncorrupt: we know that nothing else (e.g. interactions other than gravity) corrupts the model
 - Black hole and neutron binaries evolve over hundreds of millions of years and they clear any debris in their vicinity long before they merge
- Similar to how sound waves distort the medium in which they travel, gravitational waves distort the spacetime itself
 - This analogy has led to the use of standard "sirens" instead of standard candles

 $F = \frac{L}{4\pi D_L^2}$

GW APPARENT AND ABSOLUTE LUMINOSITIES

• Luminosities:

- The measured strain amplitude: h=dL/L gives the apparent luminosity
- the rate at which the frequency increases gives absolute luminosity
- Uncertainties in modeling (the instrument and the signals):
 - Instrument (amplitude and phase) calibration: currently at the level of 2-3% in amplitude and ~ 1 radian in phase
 - Currently these are smaller than the statistical uncertainty
 - Gravitational waves are detected and their parameters measured using matched filtering – waveform uncertainties could lead to systematic biases
 - Analytic models agree with numerical models to better than 1% in amplitude and fraction of a radian in phase
 - Modeling uncertainties are currently under control

З

UNKNOWN PHYSICS:

- General relativity might not be the correct theory of gravity
 - Null tests of GR with GW data show no such evidence
- Black holes could be charged or on eccentric orbits
 - Both affect the dynamics very strongly and so far we don't see evidence for charge or eccentricity
- Neutron stars have matter:
 - Matter effects (static and dynamical tides) are important
 - They affect the waveform at late stages of inspiral and post-merger oscillations
 - The equation of state of dense matter in neutron star cores is unknown:
 - GW and X-ray measurements can determine the EOS
 - When EOS is determined neutron star binaries can also measure both luminosity distance and redshift

Binary Black Hole Mergers

BREAKING THE MASS-REDSHIFT DEGENERACY WITH TIDES

- GW observations can measure only redshifted mass
 - $M_{obs} = (1+z) M_{int}$
 - In GR and there is no mass scale and so black hole binaries cannot directly infer M_{int}
- Hadronic interactions impose a mass and length scale for neutron stars:
 - Neutron star masses are roughly in the 1–3 solar mass range
 - Tidal effects go as (R/M_{int})⁵, where R is the radius of the neutron star
 - By measuring the tidal effects we can infer both M_{obs} and M_{int} and hence infer the redshift

MEASURING SOURCE PROPERTIES

- If or an arbitrary source must measure $(h_+, h_x, \psi, \theta, \phi)$, equivalently, $(D_L, \iota, \psi, \theta, \phi)$
 - a single detector only measures a combination of h₊ and h_{x;} need at least three non-collocated detectors to measure both
- the shape of the waveform contains information about the masses, spins, eccentricity
 - matched filter the signal with a set of templates over the parameter space
- fiducial arrival time and overall phase of the signal
- in all 15 parameters assuming GR is correct

6

GRAVITATIONAL WAVE EVENT CATALOGS: GWTC-1 TO GWTC-3

cumulative number of events

- GWTC-1: 2015-2017, 11 events: 10 binary black holes (BBH) and 1 binary neutron star (BNS)
- GWTC-2: 2015-2019: added 39 events, total number of events 50, 48 BBH, 2 BNS
- GWTC-2.1 2015-2020: revisited the O3a analysis, 8 new candidates, but also dropped 3, total of 55 events.
- GWTC-3 adds a further 35 events from O3b
- 2 BNS events, 3 NS-BH events, 85 BBH events
 - 7 neutron stars, 2 mystery objects and 178 black holes

Reitze Plot

POPULATION PROPERTIES, BASED ON 76 EVENTS WITH FALSE ALARM RATE < 1 PER YEAR

- what does the catalog contain:
 - 2 binary neutron star events
 - 72 confident binary black hole events
 - 2 neutron-star black hole candidate (one of which may be a binary black hole)
- rate at of mergers:
 - Is black hole binaries merge at the rate of ~ [17, 45] yr⁻¹ Gpc⁻³
 - e neutron star binaries merge at the rate of : [13, 1900] yr⁻¹ Gpc⁻³
 - e neutron star-black hole binaries merge at the rate of : [7.4, 320] yr⁻¹ Gpc⁻³
- mass spectrum peaks and gaps:
 - \odot chirp mass peaks at 7.8 M \odot and 26.6 M \odot and a gap 10-20 M \odot
 - ${\ensuremath{\, extsf{s}}}$ there seems to be no suppression of the rate above 60 M ${\ensuremath{\circ}}$

EQUATION OF STATE FROM MERGERS

- what is the equation of state of dense matter in neutron stars?
 - hadronic, strange matter, quarkgluon phase transition?
- how heavy can neutron stars be and how rapidly can they spin?

GLOBAL GROUND-BASED GRAVITATIONAL-WAVE DETECTOR NETWORK: 2010-2040+

LASER INTERFEROMETER GRAVITATIONAL WAVE DETECTORS

Credit: Virgo

LIGO INDIA

FUTURE GROUND-BASED GRAVITATIONAL-WAVE OBSERVATORIES

- Future Observatories
 - Einstein Telescope, Cosmic Explorer (often referred to as 3G or XG detectors)

FUTURE RUNS AND SENSITIVITIES

FUTURE RUNS AND SENSITIVITIES

<u>cosmicexplorer.ora</u>

Development		Observatory Design & Site Preparation	Construction & Commissioning	Operations	
GW, Phy <mark>sics, Astronomy, & Local Community Engagement</mark>			Ongoing Community Collaboration		
	Horizon Study	Site Search & Research	lected Construction	Community Facility (Operation
Initial Development		Design Stage	Comr	nission Upgrade & Observation Commission	Observation
		Construct Funded	fon Initial Fab. & Install	Flist Upgrade Fab. Lock & Install	
Laboratory Research & Prototyping		rch (Upgraded Design		
'15	'20	'25 '3	30 '3	5 '40	'45

OBSERVING CAPABILITIES OF GW DETECTOR NETWORKS

 redshift rea BBH merga 	ach to ers			
			18	42 ECS
		4 4	3G+	
0.3	0.6 	1.4 V+		
Adv				
2020	2025	2030	2035	2040

number of loud			super loud= SNR > 1000		
BBH detec	tions			~20	
			~10	18,000	
			8500	ECS	
			3G+		
0	5	60 V+	loud= SN	JR > 100	
Adv	AT				
2020	2025	2030	2035	2040	

Metric	$\Omega_{90} (\text{deg}^2)$			$\Delta D_L/D_L$		
Quality	≤ 1	≤ 0.1	≤ 0.01	≤ 0.1	≤ 0.01	
BNS						
HLVKI+	6	1	0	19	1	
VK+HLIv	19	1	0	130	1	
HLKI+E	33	1	0	4,200	5	
VKI+C	10	1	0	150	1	
KI+EC	210	6	1	13,000	14	
ECS	2,200	77	2	27,000	33	
		BE	BH			
HLVKI+	110	4	0	600	0	
VK+HLIv	310	12	0	3,600	3	
HLKI+E	610	24	1	34,000	110	
VKI+C	210	7	0	12,000	48	
KI+EC	4,600	190	7	67,000	590	
ECS	27,000	2,000	77	82,000	1,500	

Luminosity distance is measured "easily" from GW observations.

How do we get the redshift?

Redshift

- EM counterpart
- Statistical host identification
- Cross correlation of GW and EM catalogs
- Features in the mass-spectrum of neutron stars and black holes
- Astrophysical distribution
- Tides in neutron stars

Counterpart cosmology

BNSs/fraction of NSBH expected to have EM counterparts at several wavelengths (GRB, KN - optical/IR, afterglow - X-ray/optical/radio..)

- → Which counterpart will be the most promising for 3G cosmology?
 - GRBs and afterglows only detectable close to on axis (~<O(1%)). Helpful to constrain inc angle, but unlikely to be useful for 3G
 - KNe are ~isotropic, but faint and fading fast

BBH in AGN disks may also be promising (Bartos+17, McKernan+19)

Rare binary black holes can pin down the host galaxy with exquisite sky localization

- With A+ and Voyager Sensitivity there is 10% and 50% chance we will observe such rare events
- Next generation observatories guarantee hundreds of such identifications each year

Redshifts Without EM Observations (Mass Function Cosmology)

$$m_{\rm obs} = m\left(1+z\right)$$

Redshifts Without EM Observations (Mass Function Cosmology)

If I know this

 $m_{\rm obs} = m(1+z)$

Inferring redshift from dark compact objects using cross-correlation

Black holes will trace the underlying galaxies/dark matter distribution

Oguri 2016, Mukherjee+ 2018, 2019, 2020,2021 Calore+ 2020 Scelfo 2020 Bera+ 2020 Diaz+2021

Inferring redshift from dark compact objects using cross-correlation

Black holes will trace the underlying galaxies/dark matter distribution

mage credit: Jeremy Tinker and the SDSS-III collaboration dP Mukherjee+ 2018, 2019, 2020,2021 Ζ Dark sirens observed in luminosity distance space Galaxy samples observed in redshift space

Oguri 2016,

Calore+ 2020 Scelfo 2020 Bera+ 2020

Diaz+2021

 $dP = n_{GW} n_g (1 + \xi(r)) dV_{GW} dV_g$

Mukherjee+ 2020

Cosmology Beyond H0

•

Very low-z cosmology with counterparts

Given how loud nearby BNS will be in 3G, can get precision H_o measurements from few events. Let's assume it will be feasible to detect KNe out to z~0.3 in the 2030s.

Even if H_0 tension won't be interesting anymore in 2030s, percent-level H_0 measurements help break degeneracies from other probes for **beyond-LCDM** cosmologies (Di Valentino+19)

Sub-percent distance measurements in the very nearby universe will be unique to 3G observatories. They can be used to e.g. probe the **peculiar velocity field** and growth of structure (Palmese & Kim 21), **calibrate** SN distances (Gupta+19).

 $\Lambda \text{CDM} + \Omega_k + \Sigma m_\mu + w_0 + w_a$ DESI+CMB+1% GW H Di Valentino+19 $\gamma = 0.42$ 100 HLV + TAIPAN/DESI 0.60 ET BNS 0.55 ET BNS + TAIPAN/DESI TAIPAN/DESI RSD 0.50 ⁸ θ 0.45 SN + TAIPAN/DESI ET+PSCz (W18 $\gamma = 0.55$ 0.40 WiggleZ 6dFGRS (GR) 0.35 SDSS-II MGS 0.2 SDSS-LRG VIPERS 0.0 0.20.40.6 0.8 BOSS eBOSS+CMASS $\gamma = 0.68$

3% precision on $f\sigma_8$, ~0.02 uncertainty on growth index γ with 3G (Palmese & Kim 21)

Dark Energy using dark sirens

- GW sources and galaxies will be spatially clustered —> 'This can give us redshift information' using cross-correlation
- Numerous black holes to at low redshift, N^{1/2} reduction in error
- No 'Fundamental limitation' to measure luminosity distance
- Dark energy EoS measurement at sub-percent accuracy from 3G

GW DETECTORS ARE ALSO A DEEP PROBE OF FUNDAMENTAL PHYSICS

- Black hole horizons, quantum gravity, information paradox
 - Is black hole spectroscopy, multipolar structure, quantum modifications at horizon scales?
- Corrections to general relativity
 - additional fields, modifications of inspiral radiation
 - Is black hole uniqueness theorems violated: exotic compact objects?
- Probing dark matter
 - primordial black holes?, mini-charged dark matter, ultralight boson clouds, bosenovas, EM signatures?
- Gravitational-wave propagation and graviton mass
 - GW170817: constraints on Lorentz violation in the gravitational sector, Dispersion: graviton mass, extra dimensions, parity violation

