CIPANP-HFCKM-Summary

Racha Cheaib Carla Marín Alejandro Vaquero

September 4th, 2022

Racha Cheaib Carla Marín Alejandro Vaquero

CIPANP-HFCKM-Summary

September 4th, 2022 1/

Image: A math a math

- 3 HFCKM + 2 combined PPHI/HFCKM sessions
- Exclusive determination of CKM matrix elements
- Inclusive determination of CKM matrix elements
- Rare decays and Lepton Flavor (Universality) violations
- CP symmetry violation
- Interpretation of results and BSM physics
- Attendance approached pprox 20-25 consistently in all our sessions (last one 15)

- Why indirect searches? (The intensity frontier)
 - Higher sensitivity for high-energy probes in indirect searches
 - But no info on physics

Stangl

- Why indirect searches? (intensity frontier)
 - Energy scale for new physics may be too large
 - Effective approach SMEFT including new operators
 - Expected scale depends on the model
 - The tighter a model is constrained, the smaller the NP scale is
 - Unfeasible to explore the whole energy desert with direct searches
 - High-energy tails can give us valuable information (di-electron)

Altmannshofer, Stangl, Fedele

• Why indirect searches? (intensity frontier)

Altmannshofer, Ligeti

æ

- A myriad of models have been proposed to address current open questions in flavor physics
- Highlights:
 - Z' with gauged $L_{\mu} L_{\tau}$
 - Works well with $b \to s \ell \ell$ anomalies
 - Might explain the m_W problem as well
 - Leptoquarks
 - Most versions ruled out
 - U_1 leptoquarks fits current bounds for $R(D^{(*)})$ and $R(K^{(*)})$

Altmannshofer

• • • • • • • • • • •

• Global fits constrain models in a consistent way

- Different models constrain different processes \rightarrow provide a likelihood function
- Likelihoods cannot be considered separately

Stangl, Fedele

- All observables and likelihoods must be computed for every model and compared to experiment
- RG loop effects mixes different sectors

Software packages to streamline the whole procedure within the SMEFT framework

- Flav-io package, computes hundreds of flavor observables with theoretical uncertainties
- WCxf format, to store/exchange Wilson coefficients for different models
- Wilson package, runs the RGE above and below the EW scale, matching the SMEFT to the Weak Effective Theory
- Smelli package, encompassing all the previous tools

Stangl

(日) (四) (日) (日) (日)

- Other groups have developed different tools
 - Allows for a comprehensive comparison
 - Very good agreement between different approaches
- Global analysis $b \rightarrow s\ell\ell$ including up to 250 observables
 - LFU observables are cleaner

Racha Cheaib Carla Marín Aleiandro Vaguero

Fedele

Fedele

Fedele

Altmannshofer, Fedele

 \bullet Some groups focus on LFU ratios \rightarrow EVTGEN

• Specific tool for NP in $R(D^{(*)})$

• A^{μ}_{FB} anomaly in Belle data Bobeth

• Work with $\Delta A_{FB} = A^{\mu}_{FB} - A^{e}_{FB},$ almost independent of the parametrization

< D > < A >

Campagna

CKM tensions

A D > A B > A

HFCKM: CKM tensions

• Long-standing tension between inclusive and exclusive determinations in $|V_{xb}|$

• Long-standing tension between inclusive and exclusive determinations in $|V_{xb}|$

< □ > < 同 >

Inclusive CKM

A D > A B > A

HFCKM: Inclusive CKM

• Improved results from Belle II for $B \to X_u \ell \nu$ and $B \to X_c \ell \nu$

- $B \rightarrow X_u \ell \nu$ uses Full Event Interpretation (tagged)
 - Reduces $B \to X_c \ell \nu$ background
 - $|V_{ub}| = 4.10(28) \times 10^{-3}$
- $B \to X_c \ell \nu$ calculation of $\langle q^2 \rangle$ moments with hadronic tagging
 - Moments $\langle q^{2n}\rangle$ up to n=4
 - No deviation between μ and e, but differences at low q² accounted in systematic errors
 W = -41 c0(c2) + 10⁻³

•
$$|V_{cb}| = 41.69(63) \times 10^{-10}$$

Meier

HFCKM: Inclusive CKM

- Recent efforts in LQCD to calculate inclusive observables
- Uses similarities between a 4pt function, the hadronic tensor and the integral defining the total inclusive decay rate

CIPANP-HFCKM-Summary

- Exploratory study with two different ensembles/regularizations comparing to OPE
 - OPE can match the unphysical m_b of the LQCD calculations
 - Expect low q^2 deviations due to OPE
 - First results quite encouraging

V-A JLOCD V-A OPE 0.0 0.2 0.4 1.0 0.60.8

Mächler

Exclusive CKM

A D > A B > A

HFCKM: Exclusive CKM

- New results on γ and γ combination by LHCb
 - $B^{\pm} \to DK^{\pm}$, $D \to K\pi\pi\pi$, up to $85\%~A_{CP}$ in phase-space bins, $\delta_{\gamma} \sim 7^{\circ}$
 - $B^{\pm} \to Dh^{\pm}$, $D \to hh\pi^0$, $h = \pi, K$, best precision in 11 CP observables, $\delta_{\gamma} \sim 20^{\circ}$
 - γ combination: input from B and D decays, 2 new measurements and 5 updated (ones above not included)
 - New LHCb average: $\gamma=65.4^{\circ}{}^{+3.8}_{-4.2}\text{, consistent with CKM and UT fits}$
- $|V_{ub}|$ from $B^{\pm} \rightarrow K^{\pm}\mu\nu$, slight tension in low and high q^2 regions, using FF from LCSR and LQCD, respectively
- Δm_s in $B_s \rightarrow D_s^- \pi^+$: most precise measurement $\delta = 0.051 p s^{-1}$, ok with SM

< □ > < 同 >

Sazak

HFCKM: Exclusive CKM

- Several new results by Belle II in 2022
 - Trade-off purity and signal yields in tagged vs untagged analyses
 - $|V_{cb}|$ from tagged and untagged $B \to D^{(*)} \ell \nu$
 - BGL (CLN) fit in q^2 bins, using constraints from Fermilab/MILC LQCD
 - $\bullet~$ Untagged at 3% precision, comparable to previous results, goal is <1%
 - Main systematics in the tagged analysis will scale down with more data
 - $\mathcal{B}(B\to\rho\ell\nu)$ ok with SM, motivated by previous tensions in ρ decays
 - Must improve large background systematic to extract $\left|V_{ub}\right|$
- $|V_{ub}|$ from tagged and untagged $B \rightarrow \pi \ell \nu$, $\ell = \mu, e$:
 - Extend BaBar's diamond frame method to reconstruct p_B
 - Fit BCL parametrization, using LQCD Fermilab/MILC constraints
 - BR compatible with SM, competitive $|V_{ub}|$ precision

HFCKM: Exclusive CKM

• State-of-the-art LQCD calculation of $B \to D^* \ell \nu$, preliminary results

- Covers the whole q^2 range
- Full relativistic b quark
 - Simplifies the renormalization
 - Extrapolation to physical m_b
- Combined extrapolation
- Decay amplitude in tension with experiment, good agreement with Fermilab/MILC
- $R_{LQCD}(D^*) = 0.280(13),$ $|V_{cb}| = 39.2(0.8) \times 10^{-3},$ $\chi^2_{aug}/dof = 1.3$

Harrison

Rare decays and lepton flavor universality

Racha Cheaib Carla Marín Alejandro Vaquero

CIPANP-HFCKM-Summary

September 4th, 2022 20 / 30

• Rare decays very suppressed in SM

- FCNC processed not possible at tree level
- Decays allowed only via penguin diagrams

• Highly sensitive to BSM mediators

- For $b \to s\ell\ell$
 - Loop suppressed $\propto G_F \sim 10^{-5}$
 - CKM suppressed $\propto |V_{tb}V_{ts}| \sim 0.04$

• Excellent candidates for indirect searches

SM

Bouchard

Frau, Martel

NP

September 4th 2022

• Extensive program at LHCb

• Achieves most stringent limits up to date in many decays, no clear departures from SM

- $\mathcal{B}(B \to \mu \mu) < 2.6 \times 10^{-10}$
- $\mathcal{B}(B_s \to \mu \mu \gamma)_{m_{\mu\mu} > 4.9 \text{GeV/c}^2} < 2.0 \times 10^{-9}$
- $B_{(s)} \rightarrow \mu \mu \mu \mu$ most stringent in most channels
- Experimental measurements of $B_s \to \phi \mu \mu$ consistently below the SM predictions
- No signal on $B \to K^* \mu e, \, B_s \to \phi \mu e \text{ or } B \to \phi \mu \mu$
- LFU searches in a variety of rare decays
 - R_K shows 3.1 σ deviation from the SM
 - $\bullet~$ Isospin partner study of $B^0 \to K^0_s \ell \ell$ and $B^+ \to K^{*+} \ell \ell$ consistent with SM

• Further results in $D \to \mu\mu$, $D \to PP\mu\mu$ and $\Lambda_b \to \Lambda\gamma$ compatible with SM

Image: A matching of the second se

Frau, Hara, Marín

• More focused program in Belle II

- Exploring $B \to K^{(*)} \ell \ell$ decays
 - $B \to K^* \mu \mu$ @ 189 fb⁻¹ similar performance μe
 - $B \to K \nu \nu$ @ 63 fb⁻¹ new inclusive approach, no signal
 - Control channel $B \rightarrow J/\psi K$ well understood, approaches Belle precision
- $B \to X_s \gamma$ inclusive with hadronic tagging @ 189 ${\rm fb}^{-1}$
 - Results competitive with BaBar and keep improving
- New measurement of LFU ratios
 - FEI increases efficiency by 50% wrt Belle
 - $R(X_{e/\mu})$ inclusive semileptonic ratio most precise, compatible with SM
 - Aim for $R(X_{\ell/\tau})$

Image: A matching of the second se

Hara

Martel, Hara, Prell

- State-of-the-art LQCD calculation of $B \to K \ell \ell$
- $\bullet\,$ Covers the whole q^2 range
- Full relativistic b quark
 - Simplifies the renormalization
 - Extrapolation to physical m_b
- Combined extrapolation
- Matches expected Belle II precision @ 50 ab^{-1} for $B \to K \nu \nu$
- Confirms tensions with experiment

Bouchard

CPV

э.

イロト イヨト イヨト イヨト

- CP violating processes in the SM
 - B- and D-mixing, enhanced by t quark
 - Interference between mixing and decay
 - Related to angles of the unitarity triangle
 - BSM physics introduces inconsistencies that can be detected
- Good place to look for NP

Erben, Zlebcik, Villa

- Ongoing state-of-the-art *B*-mixing LQCD calculation, advanced state
- DW action for light and heavy quarks
 - Simplifies the renormalization

 $\rightarrow \begin{pmatrix} O_1 & 0 & 0 \\ 0 & O_{2,3} & 0 \\ 0 & 0 & O_{4,5} \end{pmatrix}$

- Extrapolation to physical m_b
- Simultaneous fit 2pt and ratios (better than 3pt) to reduce correlations
- Direct calculation of volume effects with available ensembles
- Mild dependence with m_b

Erben

HFCKM: CPV

- Belle II CPV program focused to highlight *B*-factories strengths
 - Can measure time resolution with tagging
 - Time dependent measurements $\Upsilon(4S)\to BB,$ with very competitive results for lifetime and mixing frequency, bound to improve
 - $B \to D^{(*)} \pi$ @ 190 ${\rm fb}^{-1}$ competitive with previous B factories
 - $B \rightarrow J/\psi K_S^0$ golden channel, controlled systematics \sim Belle
 - $B^0 \to K^0_S K^0_S K^0_S$ extremely interesting but challenging
 - $A(K^0\pi^0)$ from $B \to K^0_S\pi^0$ exclusive to B factories @ 190 fb⁻¹

< □ > < 凸

Zlebcik, Prell

- Extensive CPV program in LHCb
- Includes charm and bottom physics
- Charm decays
 - Benefits from the bin-flip method of Dalitz plots
 - In $D^0 \to K_s^0 \pi \pi$ ruling out CP violation due to mixing (just direct)
 - Precise results for the ys, improving WA
 - $A_{cp}(D^0 \to \pi\pi)$ new results with improved techniques show evidence of direct CP violation
- Bottom decays
 - $\bullet\,$ Solid evidence for direct CPV in $B \to h h h$ in several channels
 - Clear evidence for $h = \pi, K$
 - $\bullet\,$ First results for $V(hh)h \rightarrow$ new systematics due to $\omega \rho\,$ mixing
 - Small tensions in $B\to\rho K$ with BaBar/Belle
 - Evidence of P breaking from $B \to ppK\pi$ analyzing triple-product asymmetries

Villa

(日) (四) (日) (日) (日)

- Great progress in both experiment and theory
 - Systematization of global fits
 - Large amount of new LQCD calculations at unprecedented precision
 - LHCb keeps producing high precision results (CMS)
 - Belle II is reaching the point it becomes more precise than Belle
- Many anomalies to explore

Hopefully we will find NP soon