

Feasibility Study on Higgs Pair Production in Muon Collider

- Signal: $\mu^+ + \mu^- \rightarrow v_\mu + \bar{v}_\mu + H + H$
- Background:

•
$$\mu^{+} + \mu^{-} \rightarrow v_{\mu} + \bar{v}_{\mu} + b + \bar{b} + Z$$

• $\mu^{+} + \mu^{-} \rightarrow v_{\mu} + \bar{v}_{\mu} + b + \bar{b} + H$
• $\mu^{+} + \mu^{-} \rightarrow v_{\mu} + \bar{v}_{\mu} + b + \bar{b} + b + \bar{b}$

Jets Calibration

Jet P_T Response as function of θ and P_T

- 1. Try matched generator level jet with each Anti- k_t jet for events with more than or equal to 4 jets.
- 2. Divided the θP_T plane into 10-by-10 regions.
- 3. Calculate the average of Jet P_T response for each region:

$$R_{P_T} = \frac{1}{\# of truth matched reco jets} \sum \frac{P_{T_{reco}}}{P_{T_{gen}}}$$

	500										
	450	1	1	0.952	1.081	1.04	1.019	1.074	1.018	0.969	1
	400	1	0.997	1.073	1.016	0.943	0.985	1.027	1.012	0.965	1
	400	1	0.985	1.002	0.995	0.984	1.022	1.008	0.976	1.034	1
	350	1	1.046	0.992	1.038	1.113	1.047	1.109	0.982	0.989	1.332
[GeV]	300	0.983	0.953	0.996	1.023	1.026	0.992	1.01	0.996	1.001	0.963
jet P _T I	250	0.982	0.941	1.016	0.97	0.943	1.015	0.995	0.99	0.984	0.965
	200	0.995	0.985	0.999	1.045	1.009	1.03	1.009	0.986	0.984	0.965
	150	0.97	0.997	0.993	1.038	1.002	1.025	1.003	1.002	1.009	0.974
	100	0.957	0.991	0.999	1.003	1.023	0.992	1.005	1.004	0.988	0.965
	50	0.904	0.964	0.966	0.973	0.989	0.98	0.976	0.977	0.967	0.915
	0)	0.5		1	1.	5	2		2.5	3

 θ

Jet \mathbf{P}_{T} Response as function of $\boldsymbol{\theta}$ and \mathbf{P}_{T}

$\frac{P_{T_{reco}}}{P_{T_{gen}}}$ distribution for each bins

Jet $\mathbf{P}_{\mathbf{T}}$ Response as function of θ and $\mathbf{P}_{\mathbf{T}}$

Next step:

- 1. Change the partition of the bins to look into low P_T region (0-200 GeV), as most of the jets are there.
- 2. Currently the Jet P_T response is calculated with the 10k events of $v_\mu \bar{v}_\mu H H$ channel (~3k truth matched jets included). Might be useful to use an easier-to-generate channel like $v_\mu \bar{v}_\mu b b \bar{b} \bar{b}$ with more events?

