

Feasibility Study of Measuring the Higgs Selfcoupling Using the Muon Collider

- Signal: $\mu^- + \mu^+ \rightarrow v_\mu + \bar{v}_\mu + H + H$
- Background:

•
$$\mu^{-} + \mu^{+} \rightarrow \nu_{\mu} + \bar{\nu}_{\mu} + b + \bar{b} + Z$$

• $\mu^{-} + \mu^{+} \rightarrow \nu_{\mu} + \bar{\nu}_{\mu} + b + \bar{b} + H$
• $\mu^{-} + \mu^{+} \rightarrow \nu_{\mu} + \bar{\nu}_{\mu} + b + \bar{b} + b + \bar{b}$

Jets Calibration

- In order to have enough statistics, generate 100k events of
 - $\mu^- + \mu^+ \rightarrow t + \bar{t}$

- 1. Create Muon-tagging:
 - For truth-matched jet, find gen level μ^- or μ^+ near the gen level jet center. If $\Delta R_{\mu jet} < 0.5$, add muon-tagging to jet.
- 2. Checked distributions of energy response for jets w/ and w/o muon-tagging in different regions.
- 3. Muon-in-jet correction:
 - Planning to add the matched muon's four-momentum to the jet.

	500	_			•						
	450	1	0.99	0.96	0.96	0.96	0.96	0.95	0.96	0.97	1.01
	400	1.02	0.98	0.97	0.97	0.96	0.96	0.96	0.96	0.96	1.01
	400	1.04	0.97	0.96	0.97	0.96	0.97	0.96	0.97	0.95	1
	350	1.02	0.95	0.98	0.96	0.97	0.97	0.96	0.97	0.95	0.97
GeV	300	0.97	0.93	0.94	0.95	0.97	0.97	0.96	0.96	0.94	0.94
jet P _T I	250	0.93	0.91	0.94	0.94	0.96	0.95	0.95	0.95	0.91	0.92
	200	0.92	0.91	0.9	0.94	0.96	0.96	0.95	0.91	0.89	0.92
	150	0.92	0.89	0.88	0.94	0.96	0.97	0.95	0.9	0.88	0.91
	100	0.9	0.91	0.91	0.95	0.97	0.96	0.96	0.92	0.91	0.9
	50	0.85	0.9	0.91	0.94	0.95	0.95	0.94	0.92	0.9	0.86
	0)	0.5		1	1	5	2		2.5	3

 θ

Jet \mathbf{P}_{T} Response as function of $\boldsymbol{\theta}$ and \mathbf{P}_{T}

Muon-tagging = true

, i	0	0.5		1	1. <i>t</i>	.5)	2		2.5	:
50	0.84	0.85	0.83	0.86	0.88	0.87	0.86	0.83	0.84	0.84
50	0.91	0.9	0.81	0.82	0.83	0.84	0.84	0.81	0.84	0.88
100	0.93	0.86	0.72	0.84	0.89	0.88	0.78	0.78	0.8	0.9
150	0.93	0.89	0.84	0.88	0.88	0.87	0.86	0.85	0.85	0.9
jet P	0.92	0.89	0.91	0.9	0.91	0.89	0.93	0.93	0.88	0.89
500 [250	0.97	0.93	0.92	0.95	0.95	0.95	0.96	0.91	0.92	0.93
300	1.07	0.94	0.98	0.99	0.95	0.96	0.95	0.96	0.95	0.96
400	1.08	0.97	0.97	0.96	0.96	0.95	0.96	0.98	0.97	0.99
400	1	0.97	0.99	0.97	0.96	0.95	0.94	0.96	0.96	0.99
450	1	0.99	0.96	0.96	0.96	0.96	0.96	0.96	0.97	1.02
500								•		

Jet $\mathbf{P}_{\mathbf{T}}$ Response as function of θ and $\mathbf{P}_{\mathbf{T}}$

Muon-tagging = false

jet P_T [GeV]

0	I	0.5		1	1. <i>6</i>	.5)	2		2.5	:
0	0.85	0.91	0.92	0.94	0.96	0.95	0.95	0.93	0.91	0.86
50	0.9	0.91	0.92	0.96	0.98	0.97	0.97	0.94	0.92	0.9
50	0.91	0.9	0.9	0.95	0.96	0.98	0.96	0.92	0.9	0.91
50	0.92	0.91	0.91	0.95	0.97	0.97	0.96	0.92	0.89	0.92
00	0.93	0.92	0.94	0.95	0.97	0.96	0.95	0.95	0.91	0.93
.0	0.97	0.93	0.94	0.95	0.98	0.98	0.96	0.97	0.94	0.94
00	1.01	0.95	0.98	0.96	0.97	0.98	0.97	0.97	0.96	0.98
50	1.03	0.97	0.96	0.97	0.96	0.97	0.97	0.97	0.95	1
20	1.02	0.98	0.97	0.97	0.96	0.96	0.97	0.95	0.96	1.01
50	1	0.99	0.96	0.96	0.95	0.95	0.95	0.96	0.97	1.01
00 -	_			-						

Jet $\mathbf{P}_{\mathbf{T}}$ Response as function of θ and $\mathbf{P}_{\mathbf{T}}$

Percent of jet's been tagged

jet P_T [GeV]

)		0.5		1	1.	.5	2		2.5	
	10%	9%	8%	6%	6%	5%	6%	7%	8%	9%
	13%	12%	10%	7%	6%	6%	7%	9%	11%	13%
	15%	16%	13%	9%	8%	7%	7%	10%	16%	16%
	16%	18%	16%	10%	8%	9%	9%	13%	18%	17%
	17%	20%	17%	11%	11%	10%	14%	14%	17%	18%
	19%	22%	18%	16%	15%	13%	14%	18%	24%	19%
	9%	21%	23%	17%	18%	15%	19%	20%	24%	20%
	15%	22%	26%	23%	20%	17%	21%	26%	23%	17%
	0%	21%	28%	27%	24%	24%	23%	30%	28%	17%
	N/A	22%	26%	29%	29%	29%	29%	28%	25%	19%

Jet \mathbf{P}_{T} Response as function of $\boldsymbol{\theta}$ and \mathbf{P}_{T}

- 1. Is good to see that for $p_T < 400 \ GeV$ the JES w/ muon-tagging is almost always smaller than JES w/o muon-tagging.
- 2. For $p_T > 400 \text{ GeV}$, JES are almost the same.
- 3. We could see a pattern that the muon-tagging jet are less for region with low p_T and θ close to the center of the detector.

$\frac{P_{T_{reco}}}{P_{T_{gen}}}$ distribution for each bins

Old distribution without enough statistics

Jet P_T Response as function of θ and P_T

Jet $\mathbf{P}_{\mathbf{T}}$ Response as function of θ and $\mathbf{P}_{\mathbf{T}}$

Jet P_T Response as function of θ and P_T

Next step:

- 1. Muon tagging:
 - Currently discriminant is whether a gen level muon near gen level jet, should I change to whether a reco muon near reco jet?
- 2. Adding muon-in-jet correction:
 - Adding gen level muon or reco level muon?
- 3. JES after muon-in-jet correction:
 - I am thinking about calculate the JES after adding a reco muon four-momentum to the reco jet then calculate the JES again, is this right?