

Feasibility Study of Measuring the Higgs Selfcoupling Using the Muon Collider

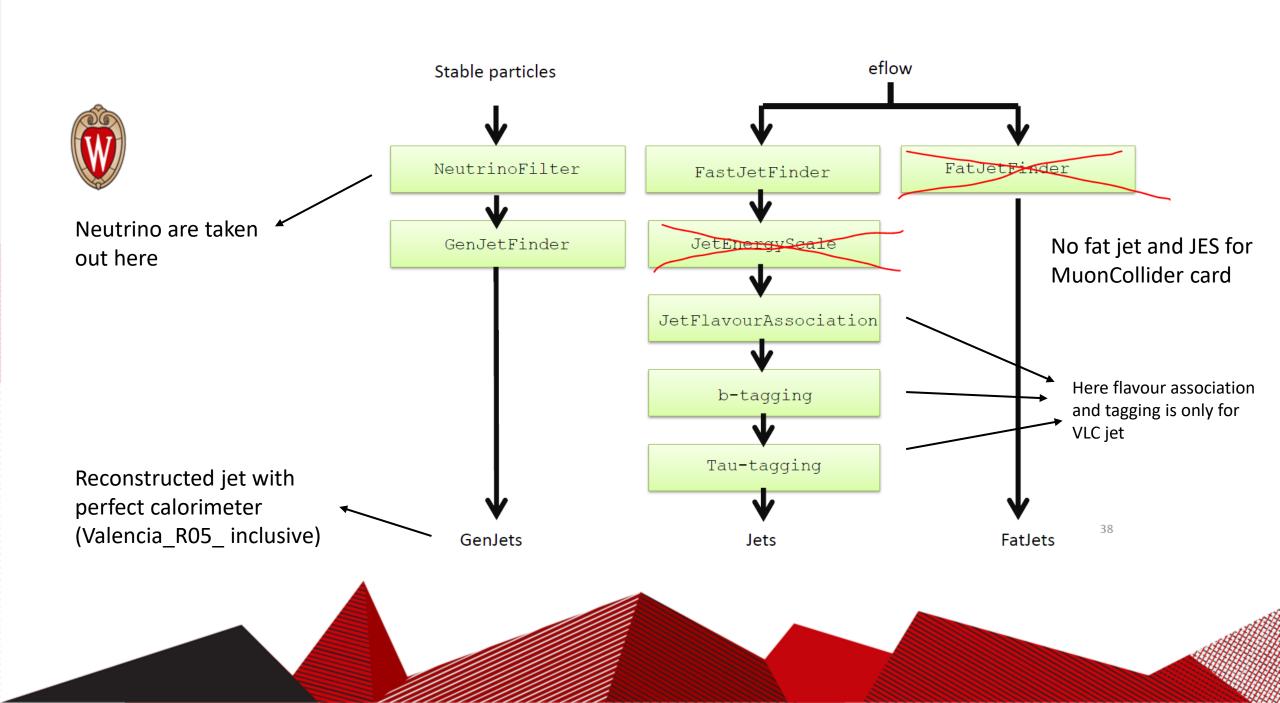
- Signal: $\mu^- + \mu^+ \to \nu_{\mu} + \bar{\nu}_{\mu} + H + H$
- Background:

•
$$\mu^- + \mu^+ \to \nu_\mu + \bar{\nu}_\mu + b + \bar{b} + Z$$

•
$$\mu^- + \mu^+ \to \nu_\mu + \bar{\nu}_\mu + b + \bar{b} + H$$

•
$$\mu^- + \mu^+ \to \nu_\mu + \bar{\nu}_\mu + b + \bar{b} + b + \bar{b}$$

Muon Collider Detector card workflow




```
Neutrino Filter
module PdgCodeFilter NeutrinoFilter {
   set InputArray Delphes/stableParticles
   set OutputArray filteredParticles
   set PTMin 0.0
   add PdgCode ≀
   add PdgCode
   add PdgCode
   add PdgCode
   add PdgCode
   add PdgCode
```

muon is not included in GenJet


```
Propagate particles in cylinder
module ParticlePropagator ParticlePropagator \{
   set InputArray Delphes/stableParticles
   set OutputArray stableParticles
   set ChargedHadronOutputArray chargedHadrons
   set ElectronOutputArray electrons
   set MuonOutputArray muons
   # radius of the magnetic field coverage in the calorimeter, in m
   set Radius 1.5
   # half-length of the magnetic field coverage in the calorimeter, in m
   set HalfLength 2.31
   # magnetic field, in T
   set Bz 4.0
```



```
Jet finder AKT
# set InputArray Calorimeter/towers
   set InputArray EFlowMerger/eflow
   set OutputArray AKTjets
   # algorithm: 1 CDFJetClu, 2 MidPoint, 3 SIScone, 4 kt, 5 Cambridge/Aachen, 6
antikt, 7 anti-kt with winner-take-all axis (for N-subjettiness), 8 N-jettiness,
 Valencia
   set JetAlgorithm 6
   set ParameterR 0.5
   set JetPTMin 20.0
```

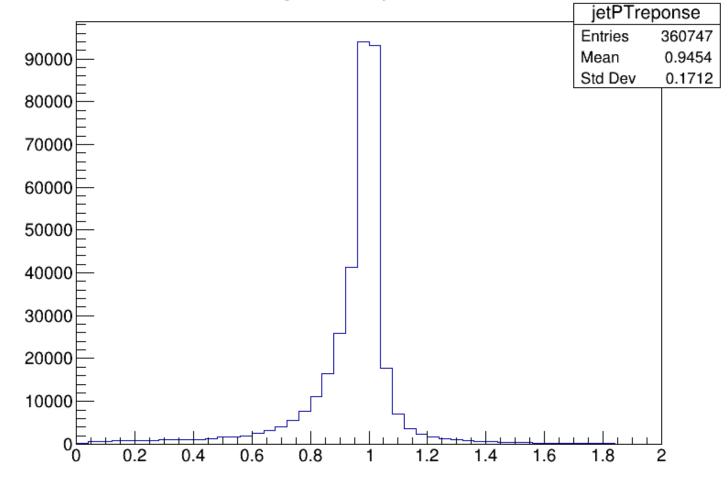
```
W
```

```
# default energy fractions {abs(PDG code)} {Fecal Fhcal}
add EnergyFraction {0} {1.0}
# energy fractions for e, gamma and pi0
add EnergyFraction
add EnergyFraction
add EnergyFraction
# energy fractions for muon, neutrinos and neutralinos
add EnergyFraction
# energy fractions for KOshort and Lambda
add EnergyFraction
add EnergyFraction
```

```
# default energy fractions {abs(PDG code)} {fraction of energy deposited in ECAL}
add EnergyFraction {0} {0.0}
# energy fractions for e, gamma and pi0
add EnergyFraction {11
add EnergyFraction
add EnergyFraction {22} {1.0} add EnergyFraction {111} {1.0}
# energy fractions for muon, neutrinos and neutralinos
add EnergyFraction
# energy fractions for KOshort and Lambda
add EnergyFraction
add EnergyFraction
```


Conclusion of observation on the workflow

- Both Gen jet and reco jet doesn't include neutrino.
 - Should add neutrino four-momentum to gen jet in order to get the truth jet
- Gen jet have muon but reco don't ?
 - It is possible to change from using energy track to use calorimeter towers which does include muon.
- Gen jet is using VLCR05_inclusive
- These leave some questions for jets calibration.


Jets Calibration

• 100k events of $\mu^- + \mu^+ \rightarrow t + \bar{t}$

jetPTresponse

Muon-in-jet situation

- 1. Create Muon-tagging:
 - Matching reco muon with reco jet
- 2. Checked distributions of energy response for jets w/ and w/o muon-tagging in different regions.
- 3. Muon-in-jet correction

Jet P_T Response as function of θ and P_T

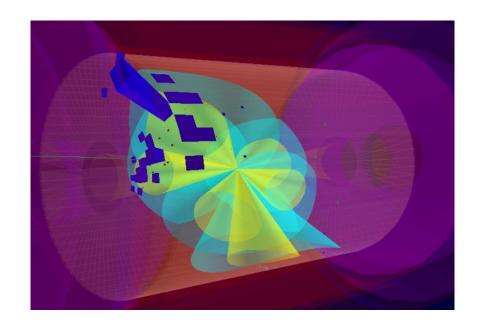
Percent of jet's been tagged

500	Jet P _T Response as function of θ and P _T									
450	N/A	5%	7%	8%	8%	8%	8%	8%	6%	5%
	0%	7%	14%	14%	12%	10%	11%	14%	13%	5%
400	4%	8%	13%	11%	10%	7%	10%	12%	9%	5%
350	3%	6%	10%	8%	7%	5%	7%	10%	10%	6%
300	3%	8%	8%	6%	7%	5%	5%	8%	9%	5%
jet P _T [GeV]	5%	6%	7%	3%	4%	3%	5%	6%	6%	5%
200	5%	6%	6%	3%	3%	3%	3%	5%	7%	5%
150	5%	6%	4%	3%	2%	2%	2%	3%	5%	6%
100	5%	5%	4%	3%	2%	2%	2%	3%	4%	5%
50	5%	5%	4%	2%	3%	2%	3%	3%	4%	4%
0)	0.5		1	1.		2		2.5	3

Jet \mathbf{P}_{T} Response as function of θ and \mathbf{P}_{T}

Muon-tagging = true

	500	- T.1.5 P.1.5 T. 7 MIN T. T.									
	150	1	1.01	0.99	0.98	0.98	0.98	0.97	0.98	0.99	1.03
	100	1	1.01	1.03	1	0.98	0.98	0.96	0.99	0.99	1.02
	350	1.06	1	1	0.98	0.99	1.03	0.97	1.02	1.01	1.02
	300	1	0.97	0.98	1.01	0.92	0.96	1	0.99	0.98	0.97
		1.01	0.97	0.99	1	0.98	0.99	1.02	0.96	0.96	0.95
jet P.	250	0.95	0.91	0.97	0.94	0.93	0.97	0.97	0.98	0.97	0.93
	200	0.97	0.97	0.96	0.99	0.92	0.9	0.98	0.9	0.93	0.97
	150	0.98	0.95	0.88	0.85	0.9	0.95	0.83	0.89	0.91	0.96
1	100	0.95	0.94	0.92	0.9	0.84	0.91	0.87	0.92	0.93	0.95
	50	0.93	0.94	0.92	0.94	0.91	0.97	0.94	0.93	0.93	0.93
0)	0.5		1	1.5 A		2		2.5	


Jet $\mathbf{P}_{\mathbf{T}}$ Response as function of $\boldsymbol{\theta}$ and $\mathbf{P}_{\mathbf{T}}$

Muon-tagging = false

	500	Set F _T Response as function of θ and F _T									
	450	1	0.99	0.96	0.96	0.95	0.95	0.95	0.96	0.97	1.01
jet P _T [GeV]	400	1.02	0.98	0.96	0.97	0.96	0.96	0.96	0.95	0.95	1.01
		1.04	0.97	0.96	0.97	0.96	0.96	0.96	0.97	0.95	0.99
	350	1.02	0.94	0.98	0.96	0.97	0.97	0.96	0.97	0.95	0.97
	300	0.97	0.92	0.93	0.95	0.97	0.97	0.96	0.96	0.93	0.94
	250	0.93	0.91	0.93	0.94	0.96	0.95	0.95	0.95	0.9	0.92
	200	0.92	0.9	0.89	0.94	0.96	0.97	0.95	0.91	0.88	0.92
	150	0.91	0.89	0.87	0.94	0.96	0.97	0.95	0.9	0.88	0.91
	100	0.9	0.91	0.91	0.95	0.97	0.97	0.96	0.92	0.91	0.89
	50	0.84	0.9	0.91	0.94	0.95	0.95	0.94	0.92	0.9	0.85
0		0.5		1	1.5 θ		2		2.5		

- 1. Only a few (<10%) are reco_muon-tagged, about half of the gen_muon-tagging:
 - Some gen muon are not reconstructed.
- 2. For those muon-tagged jets, the JES is already pretty good, which seems like muons are included?
 - Here it's really confusing (a) as the detector card does set both energy fraction of muon to 0 for both HCAL and ECAL, but what my result of JES is not consistent with that, any ideas?

Next step:

- 1. Changing the Gen Jet algorithm to anti-kt or changing reco jet algorithm to VLCR05_inclusive?
- 2. neutrino-in-jet correction:

• JES =
$$\frac{P_{T_{reco}}}{P_{T_{gen+v}}}$$

3. Still consider Muon-in-jet situation?