

HH Muon Collider Effort

Liza Brost, <u>Jason Oliver</u>, Marco Valente elizabeth.brost@cern.ch <u>jaoliver@cern.ch</u> mvalente@triumf.ca

Our mission

- We want to produce **projections** for κ_{λ} and possibly, κ_{2V}
 - For 3 benchmarks 3 TeV, 10 TeV and 30 TeV
- To do this, we target HH processes for a variety of final states
- In order to improve our projections, we may wish to combine different final states
- To leave this option open, we should ensure the different final states have common object definitions and have orthogonal selections
- We are operating under a **tight timeline**, and so we must be **pragmatic** with what we can achieve

What are people's thoughts on HHarmonising?

Higgs Self coupling diagrams

Our timeline

- The deadline for Snowmass whitepaper submission is "no later than 15th March"
 - 13 weeks from now
- "Holiday period" starting from next week
- Working weeks: 9-10
- To reach deadline we will need analysis finished 2 weeks before hand : Leaves 7 weeks or so

Is there anything we are failing to consider?

December

	Μ	Tu	W	Th	F	Sa	Su	
49	29	30	1	2	3	4	5	1
50	6	7	8	9	10	11	12	2
51	13	14	15	16	17	18	19	3
52	20	21	22	23	24	25	26	4
1	27	28	29	30	31	1	2	5
2	3	4	5	6	7	8	9	6

February

	Μ	Tu	W	Th	F	Sa	Su
6	31	1	2	3	4	5	6
7	7	8	9	10	11	12	13
8	14	15	16	17	18	19	20
9	21	22	23	24	25	26	27
10	28	1	2	3	4	5	6
11							

January

	М	Tu	W	Th	F	Sa	Su
1							
2							
3	10	11	12	13	14	15	16
4	17	18	19	20	21	22	23
5	24	25	26	27	28	29	30
6	31	1	2	3	4	5	6

March

	Μ	Tu	W	Th	F	Sa	Su
0							
11	7	8	9	10	11	12	13
12	14	15	16	17	18	19	20
13	21	22	23	24	25	26	27
4	28	29	30	31	1	2	3
15	4	5	6	7	8	9	10

Our Samples

- Whizard and Madgraph are the standard MC generators for this work
- We have a complete Whizard workflow operational
 - Whizard->Pythia->Delphes
 - Can be found here
- Whizard uses a syntax very similar to madgraph in what are called "sindarin cards"
- Discussing with theorists on the ZHH curve
- Can offer assistance if desired

Do common MC samples exist?

Signals and many production processes

Open questions:

- What are people's thoughts on HHarmonising definitions
 - Possible 4b and 2b+XX combination
- Analysis designs?
 - Cut and count (maybe a bit vanilla / not powerful)
 - Orthogonal BDTs design for combination, then optimal signal separation
 - Neural Network approach
 - How do we present the results (statistical significance, upper limits on kappa_lambda)?
- Are there things we are not considering?
- How should we go about producing samples?
 - If a simple setup is provided, could this task be split?
- Any useful resources people want to recommend or general comments, please let us know

Resources

- Working <u>Google doc</u>
- Whizard code:

https://github.com/MarcoValente/whizard-pythia-delphes/tr ee/master

- Delphes card location:
 <u>https://muoncollider.web.cern.ch/node/14</u>
- CLIC paper:
 - <u>https://arxiv.org/pdf/1901.05897.pdf</u>
- Vector Boson Fusion at multi-TeV muon colliders:
 - <u>https://arxiv.org/pdf/2005.10289.pdf</u>
- Electroweak Couplings of the Higgs Boson at a Multi-TeV Muon Collider:
 - https://arxiv.org/pdf/2008.12204.pdf

That's all for today

Additional Material

Muon Collider Forum talk:

DiHiggs with Hadronic Final States

Jason Oliver (UCI) Maximilian Swiatlowski (TRIUMF) Anyes Taffard (UCI) Marco Valente (TRIUMF)

> jaoliver@cern.ch mswiatlowski@triumf.ca <u>ataffard@uci.edu</u> marco.valente@cern.ch

Measuring the Higgs Self-coupling

We understand very well what is required to measure the Self-coupling of the Higgs

- 1. Low signal rate
 - Require High Branching Ratio good reco and good b-tagging
- 2. Dominant production mode is VBF w/ neutrinos
 - Good MET reconstruction
- 3. Cross sections are low, but scale with E especially WWHH couplings
 - High COM energies

For the most part 3) is fixed with benchmarks, and 2) is a feature muon colliders.

Branching Ratios

The order of most dominant decay processes are:

- *HH*→*bbbb* at about 33%
- *HH*→*bbWW* at about **25%**,
 - Hadronically **50%**
 - Semi-leptonically **40%**
 - Leptonically **10%**
- *HH→bbgg* at about 9.8%
- *HH→bbrr* at about 7.2%
 - Hadronically 65%
 - Other 35%
- Given the low signal rates, this very clearly lays out the processes we should be targeting
- This doesn't highlight the differences in backgrounds, but at a lepton collider these may be manageable

HH→	bb	ww	gg	TT
bb	33%	25%	9.8%	7.2%
WW		4.7%	3.7%	2.7%
gg			0.7%	1.1%
tt				0.4%

Fig. Branching Ratios for Dihiggs decay processes

DiHiggs with Hadronic Final States

- Naturally, all final states are of interest, but given short timescales it makes sense to focus on high BR final states: acceptance drives sensitivity
- If *bbbb* requires extra personpower, we can contribute there; that withstanding;
- Both hadronic *bbWW* and *bbgg* can offer significant contributions to the self-coupling sensitivity studies
- We propose we provide projections for self-coupling sensitivities using these hadronic final states
 - Primarily focusing on bbWW
 - Secondarily, the *bbgg* final state
- Naturally, there will be overlap between all channels, so effective communication will save everyone time

HH→	BR(HH->X)		
bbbb	33		
Hadronic bbWW	12.5		
Semileptonic bbWW	10		
bbgg	9.8		
Hadronic bb#	4.9		
other bb77	2.6		
Leptonic bbWW	2.5		

Useful reading

15

 \bigcirc