

Monophoton Dark Matter Studies at Muon Colliders

DELPHES Simulation

Nikhilesh V

03/03/2022

Motivation

- Weakly Interacting Massive Particles (WIMP) are natural cold
 DM candidates
- Muon Colliders offer great potential in discovering new physics, particularly in probing WIMP dark matter
- With a large event sample, the monophoton channel of production offers good prospects

Theory

- Theory from "WIMPs at High Energy Muon Colliders" *
- Results in paper produced from signal and background events generated through MadGraph
- Events generated with COM energy = 14 TeV and two DM masses = 1
 TeV, 3 TeV

^{*} https://arxiv.org/abs/2009.11287

Monophoton Channel - Signal

- 1 $\mu^+\mu^- \rightarrow \gamma\chi\chi$
- $2 \quad \gamma\gamma \quad \rightarrow \gamma\chi\chi$
- 3 $\gamma \mu^{\pm} \rightarrow \gamma v \chi \chi$
- 4 $\mu^+\mu^- \rightarrow \gamma v v \chi \chi$

Monophoton Channel - Background

Most significant background:

$$\mu^+\mu^- \rightarrow \gamma v \overline{v}$$

Current progress

- Studying the primary signal process: $\mu^+\mu^- o \gamma\chi\chi$
- Using the major SM background: $\mu^+\mu^- o \gamma v \overline{v}$
- Generating 500,000 events with MadGraph, hadronizing with Pythia and simulating detector response with DELPHES
- Currently working with COM energy = 14 TeV with with DM mass =
 0.8, 1, 3 TeV
- Studying the following discriminating variables

$$\sqrt{s}$$
 = 14 TeV

Photon p_T

$\cos \theta$ of photon

Missing mass

11

Sensitivity Studies

 Signal sensitivity measured using the Figure Of Merit (FOM) calculated as follows:

$$FOM = \frac{s}{\sqrt{b}}$$
 s = Number of normalized signal events

b = Number of normalized background events

 Calculated the FOM with a single photon selection, selections from paper and selections based on discriminating variables

Sensitivity Studies

- Applied selections from paper and generated plots for the various discriminating variables
- Based on shapes of the signal and background, applied modified selections to the same variables to improve the FOM values

Selections for DM mass = 1 TeV

Nikhilesh V 03/03/22

14000 16000 m_{missing} [GeV]

12000

Figure of Merit for COM = 14 Tev, DM mass = 1 TeV

Selections	FOM Values
Single Photon Selection $Photon \ size > 0$	0.0917
Selections from Theory Paper $Photon\ size>0$ $10^\circ < heta_\gamma < 170^\circ$ $E_\gamma > 50\ GeV$ $m_{missing}^2 > 4m_\chi^2$	0.0943
Selections based on Discriminating variables $\begin{array}{c} \text{Photon size} > 0 \\ 30^{\circ} < \theta_{\gamma} < 150^{\circ} \\ \text{E}_{\gamma} > 800 \text{ GeV} \\ \text{m}_{\text{missing}}^{2} > 4m_{\chi}^{2} \\ \text{m}_{\text{missing}}^{2} < 13800 \text{ GeV} \\ \text{MET} > 400 \text{ GeV} \\ \gamma_{p_{T}} > 400 \text{ GeV} \end{array}$	0.1960

Conclusions and further studies

- We see that applying additional selections to the discriminating variables results in a considerable increase in FOM
- Next steps would be to run similar sensitivity analyses with different
 DM masses and COM energies
- Implement a cut-based or a multivariate selection method to further improve the FOM.