Using Hashicorp Vault with HTCondor
for Oauth Credentials in Jobs

Dave Dykstra, dwd@fnal.gov

HTCondor Week
24 May 2022

2= Fermilab

mailto:dwd@fnal.gov

Why switch to tokens at all?

The primary reason to switch to tokens is that X.509 proxy certificates were never used
outside of the HTC/grid community
— They were invented by Globus, and Globus has abandoned support for the libraries. OSG and a
few others took up support in the Grid Community Toolkit but OSG has stopped support
— X.509 user proxy certificates depended on support at the SSL/TLS layer that is only rarely used

Oauth2/OpenlD Connect (OIDC) JSON Web Tokens (JWTs) are in widespread use, and are

potentially more secure because they enable much more fine-grained control
— There are a lot of existing tools that we can use with them, although we also often need some

customization
* Scitokens are JWTs with a community-standard profile of the claims in the JWTs

— They’re easier to implement because they are sent at a higher layer, i.e. http Authorization header
— Fine grained control does make them more complicated to use, however
This talk is focused on tokens obtained by end users to access storage, including
sending them with jobs through HTCondor
Note: X.509 host certificates are not going away, and they are an essential component to
securely verifying JWTs over https

Prior HTCondor solutions

 HTCondor had a couple of solutions of its own, but they each
have limitations
— The “local token issuer” solution, where HTCondor issues it own tokens

without Oauth2, doesn’t scale to many submission points, and only
supports a fixed set of JWT scopes

— The “Oauth2 credentials” solution, where HTCondor is an oauth2 client,
requires web browser authentication before most job submissions, and
doesn’t help with non-condor use cases

e We wanted to minimize the number of web browser interactions

and be able to use the same credentials both inside and outside
of HTCondor

— We wanted the multiple end user case to be as easy to use as possible

Vault with htgettoken (independent of HTCondor)

* Hashicorp Vault
— Popular open source general purpose secure secret store server

— Very flexible plugin architecture and client/server REST/JSON API, and secrets are
stored like in a filesystem

— Has existing OIDC and Kerberos plugins

* Needed some extensions, submitted as pull requests
— Behaves as an Oauth2/0OIDC client

* Integrates well with both Indigo IAM and ClLogon OIDC Providers, at least
— Manages access with its own tokens (“vault tokens”)

— We use it to store long-lived refresh tokens for many users

* htgettoken
— Relatively simple custom python command line Vault client to automate the flows
— Initially authenticates via OIDC & a web browser

— Long life (~¥1 month, renewable) refresh token stays in Vault, limited life (~1 week) Vault
token and even shorter life (~3 hour) access JWT both stored unencrypted in local files

— Follows WLCG Bearer Token Discovery standard for local filename
— Uses Vault token to get bearer tokens, or renews Vault access with Kerberos or ssh

Normal federated OIDC flow

v

/ OpenlID
I N ‘ Server | Redirect with access C(l,)nnect

JWT & refresh token Provider

Identity
Provider

-

24 May 2022

htgettoken with Vault initial OIDC flow

N/
| 4 E—

2
1 >
htgettoken \3&9” []
- OpenID
(\7 Redirect with access Ioirsi
Provider
Access JWT & Hashiorp JWT & refresh token
vault token Vault
User Browser /

Provider

y

24 May 2022

Capability sets, issuers, and roles

* JSON Web Tokens can be tailored to minimum privilege by use of
“capability” scopes with access limits (and also specific audiences)

* The knowledge of what scopes are allowed per user is maintained
by the OIDC Provider, aka the token issuer
— Does not need to be known by OIDC clients

* We configure Vault to request scope wicg.capabilityset:/group
which the token issuer translates into a set of capability scopes
— Groups correspond to VOs and roles within those VOs

— Vault configuration is done per issuer, with one VO per issuer, and each
role maps to a wlcg.capabilityset, for example:

htgettoken -a htvault.fnal.gov —i dune —r production
=> https://cilogon.org/dune, wlcg.capabilityset:/dunepro

htgettoken normal operation summary

Given a vault server address and issuer name and optionally a role, htgettoken always
gets an access token and stores it in a file

— By default in S{XDG_RUNTIME_DIR:-/tmp}/bt_uS(id -u) according to WLCG Bearer Token
Discovery

The first time it uses OIDC authentication and additionally gets two more files
— Avault token stored by default in /tmp/vt_uS(id —u)

— The “credkey” stored under SHOME/.config/htgettoken defining part of the storage path in
vault for the issuer and role

¢ Comes from the token issuer based on who authenticated in the web browser

If credkey exists but the vault token doesn’t work (e.g. vault token expired or for wrong
issuer or role), htgettoken attempts Kerberos authentication to get new vault token

— If no kerberos credentials available or attempt fails, but ssh-agent is available, htgettoken
attempts ssh authentication for the new vault token

And htgettoken has a lot of options for tailoring its operation

Example with htgettoken, initial flow

$ env|grep HTG

HTGETTOKENOPTS=--web-open-command=xdg-open --nossh

$ htgettoken -v -a vault.ligo.org -i ligo

Attempting OIDC authentication with https://vault.ligo.org:8200

Complete the authentication at:
https://cilogon.org/device/?user code=QZ3-X99-3KG
Running 'xdg-open' on the URL
Waiting for response in web browser
Storing vault token in /tmp/vt u3382
Saving credkey to /home/dwd/.config/htgettoken/credkey-ligo-default: david.dykstra
Saving refresh token to https://vault.ligo.org:8200
at path secret/oauth/creds/ligo/david.dykstra:default
Getting bearer token from https://vault.ligo.org:8200
at path secret/oauth/creds/ligo/david.dykstra:default
Storing bearer token in /run/user/3382/bt u3382

Examples with valid Vault token and with Kerberos

$ htgettoken -v -a vault.ligo.org -i ligo
Credkey from /home/dwd/.config/htgettoken/credkey-ligo-default: david.dykstra
Attempting to get bearer token from https://vault.ligo.org:8200
using vault token from /tmp/vt u3382
at path secret/oauth/creds/ligo/david.dykstra:default
Storing bearer token in /run/user/3382/bt u3382
$ rm -f /tmp/vt $(id -u)
$ htgettoken -v -a vault.ligo.org -i ligo
Credkey from /home/dwd/.config/htgettoken/credkey-ligo-default: david.dykstra
Initializing kerberos client for host@vault.ligo.org
Negotiating kerberos with https://vault.ligo.org:8200
at path auth/kerberos-ligo default
Attempting to get bearer token from https://vault.ligo.org:8200
at path secret/oauth/creds/ligo/david.dykstra:default
Storing vault token in /tmp/vt u3382
Storing bearer token in /run/ugér/3382/bt_u3382

Example decode

S httokendecode -H

"sub": "david.dykstra@ligo.org",
" aud" : "ANY" ,

"ver": "scitoken:2.0",
"nbf": "Mon Mar 14 15:24:07 CDT 2022",
"scope": "read:/frames read:/DQSegDB query:/DQSegDB",

"iss": "https://cilogon.org/ligo",

"exp": "Mon Mar 14 15:39:12 CDT 2022",

"iat": "Mon Mar 14 15:24:12 CDT 2022",

"y ELM
"https://cilogon.org/ocauth2/62b3e7866521a5ce9b6570bef50d630£?type=accessTokené&
ts=1647289451660&version=v2.0&lifetime=900000",

"cid": "cilogon:/client_id/caltech/ligo/prod"

}

htvault-config configuration package

e Package for configuring Vault for use with htgettoken
— Automates all the installation and setup of Vault
— Configuration done through simple, flexible yaml files

— Includes a modified Hashicorp plugin, an added puppetlabs plugin, and
another plugin for ssh-agent support

— Supports an option of using 3 servers for high availability using a builtin
Vault capability

— Available in OSG yum distribution along with vault and htgettoken

HTCondor+Vault integration

* htgettoken and Vault have been integrated into HTCondor
— condor_submit can be configured to automatically invoke htgettoken as
needed and store a vault token in credd

 Vault token used by condor_credmon_vault to get new short-lived access
tokens pushed to jobs

— Submit file specifies issuer, optional role, and optionally can choose
reduced audience and/or scopes

* May obtain more than one token for a job
* Based on HTCondor’s previous implementation of Oauth2 credential support

— In HTCondor 9.0 releases and above

Token flow with HTCondor and Vault

Q = vault tokens o = refresh tokens ° = access tokens
Policy DB

Job Submission
condor_submit
condor_vault_storer
htgettoken

condor_schedd

Identity Provider

V Job Execution
condor start
° »

Data Access

o
-

/

HTCondor configuration

System admin:
— Install condor-credmon-vault rpom and set for example:
SEC_CREDENTIAL GETTOKEN OPTS = -a htvault.fnal.gov

User submit file for example:

use oauth services = dune

dune oauth permissions = storage.read:/dune #optional
dune oauth resource = https://dcache.fnal.gov #optional

Service names may include role, such as dune_production
Handles may be appended to store multiple variations for each service:

dune oauth permissions readonly = storage.read:/dune
dune oauth permissions write = storage.create:/dune/users/dwd/data

All tokens end up in $ CONDOR_CREDS

Support for “robot” (unattended) operation

* Important for tasks such as production job submission
* Vault administrator can create indefinitely renewable vault tokens
— Could be automated by a web service
* htgettoken & htvault-config also support use of robot Kerberos credentials
to get new vault tokens
— Robot Kerberos credentials are long lived, stored unencrypted

— Principals are in the form “user/purpose/machine.name”
* “user” can also be a group login, for example “dunepro”

— User (or authorized user for a group) does OIDC authentication once but specifies
htgettoken --credkey option matching Kerberos principal to store refresh token in

subpath under the user’s Vault secrets path
* The same htgettoken command can be used with robot Kerberos credentials

* Can also use ssh-agent with authorized keys to get new vault tokens
— Although haven’t yet worked out how to manage the keys

Conclusions

Getting credentials almost as hidden as they can be

— Users with Kerberos or ssh-agent only need to approve on web
browser once

Configuration is managed by server operators, very little
necessary for users unless they want to “down-scope” their

tokens
All protocols are in common industry use

JWTs are better supported and more secure than X.509 proxies
— Can be much more purpose-specific
Tools all open source, generally available

Links

* Bearer token discovery:
— https://github.com/WLCG-AuthZ-WG/bearer-token-discovery
 WLCG JWT profile
— https://github.com/WLCG-AuthZ-WG/common-jwt-profile
* Vault & plugins
— https://www.vaultproject.io/
— https://github.com/hashicorp/vault-plugin-auth-jwt
— https://github.com/puppetlabs/vault-plugin-secrets-oauthapp
— https://github.com/42wim/vault-plugin-auth-ssh

* htvault-config: https://github.com/fermitools/htvault-config
* htgettoken: https://github.com/fermitools/htgettoken
* HTcondor docs: https://htcondor.readthedocs.io/en/latest/search.html?g=vault

24 May 2022 18

https://github.com/WLCG-AuthZ-WG/bearer-token-discovery
https://github.com/WLCG-AuthZ-WG/common-jwt-profile
https://www.vaultproject.io/
https://github.com/hashicorp/vault-plugin-auth-jwt
https://github.com/puppetlabs/vault-plugin-secrets-oauthapp
https://github.com/42wim/vault-plugin-auth-ssh
https://github.com/fermitools/htvault-config
https://github.com/fermitools/htgettoken
https://htcondor.readthedocs.io/en/latest/search.html?q=vault

