
Using Hashicorp Vault with HTCondor
for Oauth Credentials in Jobs

Dave Dykstra, dwd@fnal.gov

HTCondor Week
24 May 2022

mailto:dwd@fnal.gov

Why switch to tokens at all?
● The primary reason to switch to tokens is that X.509 proxy certificates were never used

outside of the HTC/grid community
⎻ They were invented by Globus, and Globus has abandoned support for the libraries. OSG and a

few others took up support in the Grid Community Toolkit but OSG has stopped support
⎻ X.509 user proxy certificates depended on support at the SSL/TLS layer that is only rarely used

● Oauth2/OpenID Connect (OIDC) JSON Web Tokens (JWTs) are in widespread use, and are
potentially more secure because they enable much more fine-grained control
⎻ There are a lot of existing tools that we can use with them, although we also often need some

customization
• Scitokens are JWTs with a community-standard profile of the claims in the JWTs

⎻ They’re easier to implement because they are sent at a higher layer, i.e. http Authorization header
⎻ Fine grained control does make them more complicated to use, however

● This talk is focused on tokens obtained by end users to access storage, including
sending them with jobs through HTCondor

● Note: X.509 host certificates are not going away, and they are an essential component to
securely verifying JWTs over https

224 May 2022

Prior HTCondor solutions
• HTCondor had a couple of solutions of its own, but they each

have limitations
⎻ The “local token issuer” solution, where HTCondor issues it own tokens

without Oauth2, doesn’t scale to many submission points, and only
supports a fixed set of JWT scopes

⎻ The “Oauth2 credentials” solution, where HTCondor is an oauth2 client,
requires web browser authentication before most job submissions, and
doesn’t help with non-condor use cases

• We wanted to minimize the number of web browser interactions
and be able to use the same credentials both inside and outside
of HTCondor
⎻ We wanted the multiple end user case to be as easy to use as possible

24 May 2022 3

Vault with htgettoken (independent of HTCondor)
• Hashicorp Vault

– Popular open source general purpose secure secret store server
– Very flexible plugin architecture and client/server REST/JSON API, and secrets are

stored like in a filesystem
– Has existing OIDC and Kerberos plugins

• Needed some extensions, submitted as pull requests
– Behaves as an Oauth2/OIDC client

• Integrates well with both Indigo IAM and CILogon OIDC Providers, at least
– Manages access with its own tokens (“vault tokens”)
– We use it to store long-lived refresh tokens for many users

• htgettoken
– Relatively simple custom python command line Vault client to automate the flows
– Initially authenticates via OIDC & a web browser
– Long life (~1 month, renewable) refresh token stays in Vault, limited life (~1 week) Vault

token and even shorter life (~3 hour) access JWT both stored unencrypted in local files
– Follows WLCG Bearer Token Discovery standard for local filename
– Uses Vault token to get bearer tokens, or renews Vault access with Kerberos or ssh

24 May 2022 4

Normal federated OIDC flow

5

Redirect with access
JWT & refresh token1

3,5

4

6

2

24 May 2022

htgettoken with Vault initial OIDC flow

Redirect with access
JWT & refresh token

1

3,5

4

6

2

Access JWT &
vault token

7
poll3

6
24 May 2022

Capability sets, issuers, and roles
• JSON Web Tokens can be tailored to minimum privilege by use of

“capability” scopes with access limits (and also specific audiences)
• The knowledge of what scopes are allowed per user is maintained

by the OIDC Provider, aka the token issuer
– Does not need to be known by OIDC clients

• We configure Vault to request scope wlcg.capabilityset:/group
which the token issuer translates into a set of capability scopes
– Groups correspond to VOs and roles within those VOs
– Vault configuration is done per issuer, with one VO per issuer, and each

role maps to a wlcg.capabilityset, for example:
htgettoken -a htvault.fnal.gov –i dune –r production

=> https://cilogon.org/dune, wlcg.capabilityset:/dunepro

24 May 2022 7

htgettoken normal operation summary
• Given a vault server address and issuer name and optionally a role, htgettoken always

gets an access token and stores it in a file
– By default in ${XDG_RUNTIME_DIR:-/tmp}/bt_u$(id -u) according to WLCG Bearer Token

Discovery
• The first time it uses OIDC authentication and additionally gets two more files

– A vault token stored by default in /tmp/vt_u$(id –u)
– The “credkey” stored under $HOME/.config/htgettoken defining part of the storage path in

vault for the issuer and role
• Comes from the token issuer based on who authenticated in the web browser

• If credkey exists but the vault token doesn’t work (e.g. vault token expired or for wrong
issuer or role), htgettoken attempts Kerberos authentication to get new vault token
– If no kerberos credentials available or attempt fails, but ssh-agent is available, htgettoken

attempts ssh authentication for the new vault token
• And htgettoken has a lot of options for tailoring its operation

24 May 2022 8

Example with htgettoken, initial flow
$ env|grep HTG
HTGETTOKENOPTS=--web-open-command=xdg-open --nossh
$ htgettoken -v -a vault.ligo.org -i ligo
Attempting OIDC authentication with https://vault.ligo.org:8200

Complete the authentication at:
https://cilogon.org/device/?user_code=QZ3-X99-3KG

Running 'xdg-open' on the URL
Waiting for response in web browser
Storing vault token in /tmp/vt_u3382
Saving credkey to /home/dwd/.config/htgettoken/credkey-ligo-default: david.dykstra
Saving refresh token to https://vault.ligo.org:8200
at path secret/oauth/creds/ligo/david.dykstra:default

Getting bearer token from https://vault.ligo.org:8200
at path secret/oauth/creds/ligo/david.dykstra:default

Storing bearer token in /run/user/3382/bt_u3382

9
24 May 2022

Examples with valid Vault token and with Kerberos
$ htgettoken -v -a vault.ligo.org -i ligo
Credkey from /home/dwd/.config/htgettoken/credkey-ligo-default: david.dykstra
Attempting to get bearer token from https://vault.ligo.org:8200
using vault token from /tmp/vt_u3382
at path secret/oauth/creds/ligo/david.dykstra:default

Storing bearer token in /run/user/3382/bt_u3382
$ rm –f /tmp/vt_$(id –u)
$ htgettoken -v -a vault.ligo.org -i ligo
Credkey from /home/dwd/.config/htgettoken/credkey-ligo-default: david.dykstra
Initializing kerberos client for host@vault.ligo.org
Negotiating kerberos with https://vault.ligo.org:8200
at path auth/kerberos-ligo_default

Attempting to get bearer token from https://vault.ligo.org:8200
at path secret/oauth/creds/ligo/david.dykstra:default

Storing vault token in /tmp/vt_u3382
Storing bearer token in /run/user/3382/bt_u3382

1024 May 2022

Example decode

$ httokendecode -H
{
"sub": "david.dykstra@ligo.org",
"aud": "ANY",
"ver": "scitoken:2.0",
"nbf": "Mon Mar 14 15:24:07 CDT 2022",
"scope": "read:/frames read:/DQSegDB query:/DQSegDB",
"iss": "https://cilogon.org/ligo",
"exp": "Mon Mar 14 15:39:12 CDT 2022",
"iat": "Mon Mar 14 15:24:12 CDT 2022",
"jti":

"https://cilogon.org/oauth2/62b3e7866521a5ce9b6570bef50d630f?type=accessToken&
ts=1647289451660&version=v2.0&lifetime=900000",
"cid": "cilogon:/client_id/caltech/ligo/prod"

}

1124 May 2022

htvault-config configuration package
• Package for configuring Vault for use with htgettoken
– Automates all the installation and setup of Vault
– Configuration done through simple, flexible yaml files
– Includes a modified Hashicorp plugin, an added puppetlabs plugin, and

another plugin for ssh-agent support
– Supports an option of using 3 servers for high availability using a builtin

Vault capability
– Available in OSG yum distribution along with vault and htgettoken

24 May 2022 12

HTCondor+Vault integration
• htgettoken and Vault have been integrated into HTCondor
– condor_submit can be configured to automatically invoke htgettoken as

needed and store a vault token in credd
• Vault token used by condor_credmon_vault to get new short-lived access

tokens pushed to jobs
– Submit file specifies issuer, optional role, and optionally can choose

reduced audience and/or scopes
• May obtain more than one token for a job
• Based on HTCondor’s previous implementation of Oauth2 credential support

– In HTCondor 9.0 releases and above

24 May 2022 13

Token flow with HTCondor and Vault

Job Submission

Job Execution

Data Access

condor_schedd

condor_shadow

condor_startd

condor_starter

User’s job

Token Issuer

Data Server

User

Policy DB
= refresh tokensR A = access tokens

Identity Provider

A
AA

Vault RA

V = vault tokens

A

V

V

24 May 2022

14

condor_submit
condor_vault_storer

htgettoken

condor_credd
condor_credmon_vault

HTCondor configuration
• System admin:
– Install condor-credmon-vault rpm and set for example:
SEC_CREDENTIAL_GETTOKEN_OPTS = -a htvault.fnal.gov

• User submit file for example:
use_oauth_services = dune
dune_oauth_permissions = storage.read:/dune #optional
dune_oauth_resource = https://dcache.fnal.gov #optional

• Service names may include role, such as dune_production
• Handles may be appended to store multiple variations for each service:

dune_oauth_permissions_readonly = storage.read:/dune
dune_oauth_permissions_write = storage.create:/dune/users/dwd/data

• All tokens end up in $_CONDOR_CREDS

24 May 2022 15

Support for “robot” (unattended) operation
• Important for tasks such as production job submission
• Vault administrator can create indefinitely renewable vault tokens

– Could be automated by a web service
• htgettoken & htvault-config also support use of robot Kerberos credentials

to get new vault tokens
– Robot Kerberos credentials are long lived, stored unencrypted
– Principals are in the form “user/purpose/machine.name”

• “user” can also be a group login, for example “dunepro”
– User (or authorized user for a group) does OIDC authentication once but specifies

htgettoken --credkey option matching Kerberos principal to store refresh token in
subpath under the user’s Vault secrets path
• The same htgettoken command can be used with robot Kerberos credentials

• Can also use ssh-agent with authorized keys to get new vault tokens
– Although haven’t yet worked out how to manage the keys

24 May 2022 16

Conclusions
• Getting credentials almost as hidden as they can be
– Users with Kerberos or ssh-agent only need to approve on web

browser once
• Configuration is managed by server operators, very little

necessary for users unless they want to “down-scope” their
tokens

• All protocols are in common industry use
• JWTs are better supported and more secure than X.509 proxies
– Can be much more purpose-specific

• Tools all open source, generally available

24 May 2022 17

Links
• Bearer token discovery:

– https://github.com/WLCG-AuthZ-WG/bearer-token-discovery
• WLCG JWT profile

– https://github.com/WLCG-AuthZ-WG/common-jwt-profile
• Vault & plugins

– https://www.vaultproject.io/
– https://github.com/hashicorp/vault-plugin-auth-jwt
– https://github.com/puppetlabs/vault-plugin-secrets-oauthapp
– https://github.com/42wim/vault-plugin-auth-ssh

• htvault-config: https://github.com/fermitools/htvault-config
• htgettoken: https://github.com/fermitools/htgettoken
• HTcondor docs: https://htcondor.readthedocs.io/en/latest/search.html?q=vault

24 May 2022 18

https://github.com/WLCG-AuthZ-WG/bearer-token-discovery
https://github.com/WLCG-AuthZ-WG/common-jwt-profile
https://www.vaultproject.io/
https://github.com/hashicorp/vault-plugin-auth-jwt
https://github.com/puppetlabs/vault-plugin-secrets-oauthapp
https://github.com/42wim/vault-plugin-auth-ssh
https://github.com/fermitools/htvault-config
https://github.com/fermitools/htgettoken
https://htcondor.readthedocs.io/en/latest/search.html?q=vault

