
Testing GPU/ML Framework
Compatibility

Justin Hiemstra
HTCondor Week

May 24, 2022

Introduction

● Every ML job that runs on a
GPU in CHTC requires three
things to run correctly:
a. A deep learning framework –

e.g. PyTorch, TensorFlow
b. GPU selection – in

HTCondor, this is defined
using a CUDA Compute
capability

c. An instance of some CUDA
runtime library – this handles
communication between the
GPU and the computer by
providing drivers. Source: https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

Introduction

● Every ML job that runs on a
GPU in CHTC requires three
things to run correctly:
a. A deep learning framework –

e.g. PyTorch, TensorFlow
b. GPU selection – in

HTCondor, this is defined
using a CUDA Compute
capability

c. An instance of some CUDA
runtime library – this handles
communication between the
GPU and the computer by
providing drivers. Source: https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

Introduction

● Every ML job that runs on a
GPU in CHTC requires three
things to run correctly:
a. A deep learning framework –

e.g. PyTorch, TensorFlow
b. GPU selection – in

HTCondor, this is defined
using a CUDA Compute
capability

c. An instance of some CUDA
runtime library – this handles
communication between the
GPU and the computer by
providing drivers. Source: https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

Introduction

● Every ML job that runs on a
GPU in CHTC requires three
things to run correctly:
a. A deep learning framework –

e.g. PyTorch, TensorFlow
b. GPU selection – in

HTCondor, this is defined
using a CUDA Compute
capability

c. An instance of some CUDA
runtime library – this handles
communication between the
GPU and the computer by
providing drivers. Source: https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

So why is this a difficult problem?

● Lack of documentation

Source: https://www.explainxkcd.com/wiki/index.php/2224:_Software_Updates

● Lack of documentation
● Dropped support for obsolete

frameworks/compute capabilities
○ e.g. support for compute capability 2.x

(Fermi architecture) dropped starting at
CUDA runtime version 9.0

Source: https://www.explainxkcd.com/wiki/index.php/2224:_Software_Updates

● Lack of documentation
● Dropped support for obsolete

frameworks/compute capabilities
○ e.g. support for compute capability 2.x

(Fermi architecture) dropped starting at
CUDA runtime version 9.0

● Non-heterogeneous server
configuration

Different servers
with different
max CUDA
library versions

Source: https://www.explainxkcd.com/wiki/index.php/2224:_Software_Updates

Testing a single tuple of versions

(Framework and CUDA toolkit)

● Did it match?
● Did the environment

resolve?
● Did the framework

find and use the
GPU?

Testing a single tuple of versions

Conda Environment

(Framework and
CUDA toolkit)

● Did the
environment
resolve?

Testing a single tuple of versions

Conda Environment

(Framework and
CUDA toolkit)

(Compute Capability
and Timeout)

HTCondor Submit
File ● Did the

environment
resolve?

(Compute Capability
and Timeout)

Testing a single tuple of versions

Submit the Job

HTCondor Submit
File

Conda Environment

(Framework and
CUDA toolkit)

● Did it match?
● Did the

framework find
and use the
GPU?

(Compute Capability
and Timeout)

● Did the
environment
resolve?

Testing a single tuple of versions

Analysis:

Submit the Job

HTCondor Submit
File

Conda Environment

(Framework and
CUDA toolkit)

● Did it match?
● Did the

framework find
and use the
GPU?

(Compute Capability
and Timeout)

● Did the
environment
resolve?

Scaling up

● Brute-force analysis of the entire
version space poses
challenges:
○ Very large search space will

gobble up resources
○ Need some type of

automation for collecting
valid test parameters

○ How to manage all the jobs

Scaling up

Analysis

Job management

Dynamically
generate run files

Prune the version
space

Routine testing &
result aggregation

Version space pruning
● Only certain compute capabilities may be available

○ Query the system:

● Focus attention on framework and CUDA runtime versions available through
Conda

○ Generate these using RegEx:

● Consider testing only the most recent versions of each framework/CUDA
runtime

condor_status -compact -constraint TotalGpus > 0 -af CUDACapability

Version space pruning
● Only certain compute capabilities may be available

○ Query the system:

● Focus attention on framework and CUDA runtime versions available through
Conda

○ Generate these using RegEx:

● Consider testing only the most recent versions of each framework/CUDA
runtime

condor_status -compact -constraint TotalGpus > 0 -af CUDACapability

conda search tensorflow-gpu -c conda-forge | grep -E -o \
' [0-9]+.[0-9]+.[0-9]+ ' | cut -d. -f 1-2 | awk '{$1=$1;print}' | uniq

conda search cudatoolkit -c conda-forge | grep -E -o \
' [0-9]+.[0-9]+.[0-9]+ ' | cut -d. -f 1-2 | awk '{$1=$1;print}' | uniq

Version space pruning
● Only certain compute capabilities may be available

○ Query the system:

● Focus attention on framework and CUDA runtime versions available through
Conda

○ Generate these using RegEx:

● Consider testing only the most recent versions of each framework/CUDA
runtime

condor_status -compact -constraint TotalGpus > 0 -af CUDACapability

conda search tensorflow-gpu -c conda-forge | grep -E -o \
' [0-9]+.[0-9]+.[0-9]+ ' | cut -d. -f 1-2 | awk '{$1=$1;print}' | uniq

conda search cudatoolkit -c conda-forge | grep -E -o \
' [0-9]+.[0-9]+.[0-9]+ ' | cut -d. -f 1-2 | awk '{$1=$1;print}' | uniq

Scaling up

Analysis

Job management

Dynamically
generate run files

Prune the version
space

Routine testing &
result aggregation

Dynamic file generation

● Each job needs needs several files:
○ Portable Conda installer
○ Conda environment file (ML framework version and CUDA runtime version)
○ HTCondor submit file (Compute capability and timeout)
○ Script to configure environment on execute node

Dynamic file generation

● Each job needs needs several files:
○ Portable Conda installer
○ Conda environment file (ML framework version and CUDA runtime version)
○ HTCondor submit file (Compute capability and timeout)
○ Script to configure environment on execute node

● For each job, use Python String format() method to build files

env_yml = """channels:
- conda-forge
- defaults
dependencies:
- tensorflow-gpu={}
-cudatoolkit={}"""\
.format(tf_version,cuda_lib_version)

Scaling up

Analysis

Job management

Dynamically
generate run files

Prune the version
space

Routine testing &
result aggregation

Job management

● Once all files are generated, they need to be submitted and managed:
○ Each job as a timeout – if no match has occurred within this period, count as a failure
○ Wait until global timeout before processing output files

Job management

● Once all files are generated, they need to be submitted and managed
○ Each job as a timeout – if no match has occurred within this period, count as a failure
○ Wait until global timeout before processing output files

How can we automatically manage job submissions without leaving a script running on the submit node?

Directed Acyclic Graph Workflows (DAGs)

● HTCondor supports DAGman, a
tool for DAG workflows

PRE Script

Job
1

Job
2

Job
3

Job
N…

POST Script

DAGman
Parent Process

Directed Acyclic Graph Workflows (DAGs)

● HTCondor supports DAGman, a
tool for DAG workflows

● Testing procedure using
DAGman:

○ DAGman spawns a parent process
○ Parent process runs PRE Script to

handle pruning and file generation
○ Parent process submits all jobs with

a 24 hour timeout. Most will match
but some won't

○ After 24 hours, parent process runs
a POST script to interpret output of
each job

PRE Script

Job
1

Job
2

Job
3

Job
N…

POST Script

DAGman
Parent Process

Scaling up

Analysis

Job management

Dynamically
generate run files

Prune the version
space

Routine testing &
result aggregation

Analysis
● Conditions for "success:"

○ The job matched
○ The environment resolved
○ ML framework can see GPU and run a basic operation

● For each job:
○ Scan the output and error file
○ Look for keywords that indicate status of each

condition
● A failure in any step constitutes a total failure

○ Record which step failed to better understand the
system

Sample Output

Framework
Framework

Version
Compute
Capability

CUDA
Runtime
Version

TF 2.6 7.5 11.1-11.5

TF 2.7 7.5 11.1-11.5

TF 2.6 8.0 11.1-11.5

TF 2.7 8.0 11.1-11.5

PT 1.10 7.5 11.1-11.5

PT 1.11 7.5 11.1-11.5

PT 1.10 8.0 11.1-11.5

PT 1.11 8.0 11.1-11.5

Framework Framework
Version

Compute
Capability

CUDA
Runtime
Version

Failure
Reason

TF 2.4 8.0 11.4
Environment
Resolution
Failure

TF 2.6 8.0 11.6 Failure to
Match

PT 1.11 8.0 11.1
Environment
Resolution
Failure

PT 1.11 8.0 11.6 Failure to
Match

Valid Combinations Invalid Combinations

Scaling up

Analysis

Job management

Dynamically
generate run files

Prune the version
space

Routine testing &
result aggregation

Routine testing and result aggregation

● Run quarterly, view tables, look for anything unexpected
● Use the stored valid and invalid combinations to help during

facilitation meetings, quickly diagnose reasons for failure
● Researcher could use this code and DAG to explore how these

version combinations affect runtime or deep learning model
performance

Questions?

GitHub Repo:
https://github.com/CHTC/gpu-compatibility-testing

This work is supported by NSF under Cooperative Agreement OAC-2030508 as part of the
PATh Project. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the NSF.

Additional support provided by the UW-Madison GPU Lab UW2020 award funded by the
Office of the Vice Chancellor for Research and Graduate Education and the Wisconsin
Alumni Research Foundation.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2030508
https://path-cc.io/
https://chtc.cs.wisc.edu/uw-research-computing/gpu-lab.html

