
In partnership with:

Exploring the use of containerized HTC workloads for
running HL-LHC analysis on HPC centers
Maria. P. Acosta Flechas – Computing Services Specialist @ Fermilab
HTCondor Week 2022
May 24th 2021

HPC panorama: going into the Exascale era
Within the federal government, the Department of Energy (DOE) leads the effort towards leading the world
in high performance computing (HPC), with the nation’s fastest and most capable supercomputers housed
at the DOE national laboratories.

2

How do we seamlessly run HTC workloads on HPC systems?
Depends … not one fits all

COBALT
(Component Based
Lightweight Toolkit)

HPC Batch system
integration

HTCondor binaries
availability

• Limited remote access for:
– Job submission
– Data transfers
– Limited or no general network

communication
• High-bandwidth shared

filesystem
– Both external and internal

access (through Login/Edge
machines)

– We can move jobs in addition
to their data

3

HEPCloud @ Fermilab
“A scientific gateway to resources beyond local worker nodes and grids, expanding

into high performance computing (HPC) centers and the cloud.”

https://hepcloud.fnal.gov/

4

https://hepcloud.fnal.gov/

HEPCloud: Exploring diverse integration paths

• Modular design of the Decision Engine
• Already capable of handling commercial

cloud bursts and HPC submission to:
NERSC Cori, TACC Frontera, Expanse,
Purdue-Anvil, Fermilab’s Wilson Cluster
and more.

• Underlying GlideinWMS functionality
provides the DE with powerful resource
management and allocation.

• Project does not own or operate
experiment submit points (CMS WMAgent,
Jobusub for FermiGrid)

• Jobs need to be moved to HEPCloud-
capable Schedds in order to make use of
these resources.

• Several monitoring attributes and
traceability are key and need to be
delivered to the experiment.

• Data transfer systems are tightly coupled to
each experiment central computing.

Opportunities Challenges

5

Theta is an 11.7-petaflops supercomputer based on Intel processors and interconnect
technology, an advanced memory architecture, and a Lustre-based parallel file
system, all integrated by Cray’s HPC software stack.

Theta supercomputer at Argonne National Laboratory

Per Node Aggregate

Compute Nodes Intel KNL 7230 4,392

Compute Cores 64 281,088

Compute Memory -
DDR4 192 GiB 843,264 GiB

Compute Memory -
MCDRAM 16 GiB 70,272 GiB

Compute SSD 128 GiB 561,176 GiB

6

Theta and HEPCloud

• ALCC allocation for FY21 enabled
R&D effort for implementing the
split/starter on Theta.

• Extensive testing and multiple
code refactors later, we
successfully ran HL-LHC
production workflows via the
split/starter method.

• Smaller allocation was granted for
FY22 enabling a second phase of
R&D for Lumberjack.

7

https://www.alcf.anl.gov/science/alcc-allocation-program

• Proxy startd on public network
– Accepts jobs
– Starter writes job + data to

filesystem
• On execute node

– Job + data copied to local disk
– Standalone starter runs job
– Results written back to filesystem

HTCondor split-starter

Based on diagram from: https://indico.cern.ch/event/936993/contributions/4022104/

8

HTCondor split-starter – HEPCloud extras
• Pull jobs from CMS WMAgents

– Job router grabs ‘T3_US_ANL’ jobs and
submits them to our local schedd

– Job is duplicated in the local queue.
– Original job stays Idle, copy reflects

state of routed job

• “Edge node” provisioning
– Runs all FNAL side starters
– Initiates interactions with Theta
– Keeps track of jobs
– Talks to local pool central managers

• Extra services available to the startd
– Squid service for CVMFS
– Non-FUSE, unprivileged CVMFS

through cvmfsexec
– Singularity

9

HTCondor split-starter – Results

• An excellent alternative for heavily restricted inbound networks as most communication
happens through files via SSHFS or shared storage (if available).

• Ephemeral and effective, will report to the remote pool as regular Startds.
• An ideal scenario where we benefited from lightweight credentials in the form of

IDTOKENS.
• Snowmass Gen Campaign 2021 on US HPC assigned exclusively to ANL-Theta ran on

production split/starters resulting in ~14.4M CMS HL-LHC events
• ALCF support facilitated R&D efforts, provisioning machines for supporting proxy starter

workloads outside of shared login nodes.

10

The idea of Lumberjack (credits to Jaime Frey)

• “Local” or jobs to be exported are regular vanilla
jobs.

• Explicit “export” and “import" client commands
prepare the jobs for movement to another
schedd and return the results.

• The user is responsible for moving all of the job-
related files to/from the remote schedd location.

• No intermediate updates of job status are made
to the local schedd.

• The remote schedd is a newly-created schedd
intended to just run these jobs.

A set of jobs in the local schedd are flagged as managed by an external scheduler and they
end up in some remote schedd for scheduling and execution

FNAL

Diagram from: https://indico.cern.ch/event/936993/contributions/4022104/

11

Lumberjack – HEPCloud workflow
A set of jobs in the local schedd are flagged as managed by an external scheduler and they

end up in some remote schedd for scheduling and execution

HTCondor Schedd:
Forest of jobs
waiting to run

1. Export metadata, input
and SPOOL files of a

subset of jobs defined by
a constraint expression

2. Estimate, adjust and
prepare for remote

processing

3. Containerized remote processing
(sawmill)

4. Gather results
and outputs

5. Import metadata,
SPOOL and output files of
processed jobs previously

exported

6. Schedd marks imported
jobs as finished, results

and outputs are staged out
transparently for the user

12

job_queue.log

1. Export job metadata and inputs
• In order to facilitate issuing import/export commands to the Schedd, I wrote a python wrapper

for Lumberjack methods which allows us to do this via the command line:

• This script needs to be run from the Original Schedd, it passes a job constraint, or a set of job
IDs to HTCondor and places outputs into a defined output directory

• https://github.com/HEPCloud/fnalhpc_startd/blob/master/lumberjack/condor_lumberjack.py

13

https://github.com/HEPCloud/fnalhpc_startd/blob/master/lumberjack/condor_lumberjack.py

2. Staging and resource estimation

Parameters:
HPC_SITE=ALCF_THETA
HPC_BATCH_SYSTEM=COBALT
HPC_USERNAME=macosta
HPC_ALLOCATION=HEPCloud-FNAL
SCHEDD_FILE=exported_job_queue.log

Files:
job_queue.log: Lumberjack exported
Schedd queue via Python bindings

HPC/Theta

Prepare HPC job (sawmill) files

Stage Lumberjack job_queue.log
and input files

Build submit script and sawmill
payload for HPC job and enqueue

What is happening?
1. File staging for the Schedd process within the container is done automatically.
2. SPOOL and input file paths are ’translated’ for emulating original Schedd paths within container and

stored in a key,value hash file.
3. A ‘sawmill’ job is submitted to the HPC

IN

14

job_queue

3. Containerized remote queue processing

aprun sawmill_payload_start.sh

cvmfsexec -- singularity run docker://hepcloud-sawmill

Singularity container (HTCondor)

frontier_squid start

configure_sawmill --file /scratch/job_queue.log

’Sawmill’: submitting HTCondor pools as HPC jobs:
• Custom HPC job runs containerized HTCondor

central manager (COLLECTOR, NEGOTIATOR,
SCHEDD) and n startd instances filling
resources allocated to the job.

• Startd instances are tailored specifically for the
job(s) type and requirements as known from
exported queue file.

• Provisions ancillary services (CVMFS, frontier
squid, monitoring) for jobs.

• Custom entrypoint script monitors for internal
queue status, once all jobs have completed,
HPC job exits.

• Performs stage out.

15

4-6. Output collection, importing results into original schedd

/lus/thetafs0/projects/hepcloud/lumberjack/slurm_43658_lumberjack_out.tgz

slurm_43658_lumberjack_out.tgz
> LOCAL_DIR/*
> Job output, log dirs
> lumberjack_importhash

HPC/Theta

sawmill payload has completed
execution within HPC

Final steps for stageout:
• ’sawmill’ performs stage out into a tarball containing job logs, HTCondor container logs, job output files

and a ‘translation’ hash table for path matching.
• Hash table automatically interpreted by condor_lumberjack.py import command
• Places output files and dirs back, exported jobs marked C, done!

[admin@origin-schedd] $ python3 condor_lumberjack.py --import /data/slurm_43658_lumberjack_out.tgz

Output tarball transferred back
to original Schedd

OUT

16

Lumberjack - Results

• Provides a unique opportunity for on-the-fly partial or total Schedd queue job
processing on any remote system capable of running containerized payloads. From
HPCs to public clouds and Kubernetes, possibilities are endless!

• Integrating with Workload Management Systems is complex as many moving parts in a
submit point increase the work required to replicate file paths and job states in a
containerized environment.

• An ideal solution for many use cases that can benefit from getting ‘chunks’ out of their
HTCondor queues and running them instantly on an external system that supports
containers.

17

Final summary
Split-starter Lumberjack

• Not different from what a typical HTC job
would do. Split/starter joins the pool as a
regular worker node startd. Performance

• Improved performance. Entire workflows
waiting for resources in the queue are easily
transported and run in HPC/remote Schedd
asap.

• User needs to have important knowledge
of the code and the HPC machine
specifics to operate.

Usability
• User does not have to worry about internals as

the system is designed to handle the entire
Lumberjack workflow.

• Depends entirely on Filesystem, from our
experience, this is a fragile point for some
HPCs.

• Proxy startds become unstable as the
Edge node load increases with each split-
starter instance.

Reliability

• If all components are properly configured
before going into the HPC, the system is
reliable to produce finished jobs.

• Implements periodic monitoring checks to
avoid major disruptions and retries.

• The split-starter is tailored to the HPC
batch system. Restrictions and challenges
inherent to the HPC, specific networking
and storage topologies.

Portability
• Needs an almost ‘perfect match’ of the original

Schedd which can be tricky to achieve within
typically restricted containers and complex
Schedd setups.

• Error handling and prevention can be
greatly improved. Prone to
synchronization issues.

• No checkpointing made by default.
System resilience

• Exporting and re-importing queues is still
manual. When errors occur, unchecked
operations on SPOOL directories can disrupt
the original schedd functionality.

18

Conclusions and looking ahead:
• Defining clear integration paths for split/starter or lumberjack with Decision Engine is an

important next step as both approaches still require human interaction.
• Re-factored Decision Engine is in the works, we are expecting to integrate the split starter

and possibly lumberjack after new release goes into production (deployment to start
during summer 2022)

• Two different approaches implemented for a single HPC. The project will need to further
evaluate realistic production scenarios and expand R&D effort to other machines and
batch system flavors.

• Collaborating and dedicating effort to R&D provides powerful knowledge and insights,
leads to improvements on existing systems and enables innovation and space for creative
solutions.

• As the Exascale era comes closer, it’s important for the project to be equipped with solid
technical and operational capabilities to tackle the unknown territory of HL-LHC data
coming into our system.

19

Thanks J Questions?

Maria Acosta - SCS/CSI
macosta@fnal.gov

@macosta on Slack

20

mailto:macosta@fnal.gov

Backup Slides

21

HPC/Theta Login Node

Current component diagram (Lumberjack)

22

A real Lumberjack run (1):

23

Startup and job queue inspection:

A real Lumberjack run (2):

24

Containerized HTCondor pool and Schedd startup on HPC worker, condor_q/condor_status verification:

A real Lumberjack run (3):

25

Job stats periodic report:

All jobs completed, interrupt HPC job, exit:

Current component diagram (split/starter)

Original, more detailed diagram:
https://drive.google.com/file/d/1YbfxLSJLMvio
tmao3KTZ2FFbfz64Kutb/view?usp=sharing

26

https://drive.google.com/file/d/1YbfxLSJLMviotmao3KTZ2FFbfz64Kutb/view?usp=sharing

HTCondor split-starter – Final implementation
HEPCloud project requested the allocation of a Machine connected to the internal network at ALCF and with inbound and
outbound connection to the outside world.

edge-svc-01.alcf.anl.gov
RHEL 7.9 (Maipo)
16 Intel Xeon Gold CPUs @ 3.20GHz
100Gb RAM
120 GB local disk
Shared Filesystems mounted:
/gpfs/mira-home (GPFS) for User home areas (1.1 P)
/lus/theta-fs0 (Lustre) for Project areas (1.4 P)
No root access or permissions for installing software.
Singularity available.

✓ Shared storage between the
Edge machine and HPC workers,

removed the need for SSHFS

27

Flowchart diagram of the setup/algorithm

28

• A rather rudimentary effort at automating some of this
• Cron job runs under my user ‘macosta’ on edge-node every 00 minute of every hour
>> cleans up Stale HTCondor Singularity startd instances

i.e from finished/exited/killed COBALT jobs
>> Queries the condor_schedd for Idle jobs matching our Startd ‘START’ expression:
START = stringListIMember("T3_US_ANL",TARGET.DESIRED_Sites) && \

time() <= WN_WnTime + 900 && \
stringListIMember("cms",TARGET.x509UserProxyVOName)

If condor_q has Idle jobs ’WE’ could run:
Check my COBALT queue, am I waiting for resources already?

$(qstat –u myusername)
No?. submit resource requests (COBALT jobs)
Yes?. ok. Keep waiting

OK, I’m done for now. Will come back in an hour.
Return 0

Automation: Poller.sh

✓ No more “pushing the button”,
✓ No more complicated ** math **

✓ ✓ Just keep a close eye @ cronjob output

29

• https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview
• https://indico.cern.ch/event/957688/contributions/4058330/attachments/2123148/3573944/RD_on_Connecti

ng_Centers_with_limited_no_outbound_connectivity_OC_week_Oct_2020_1.pdf
• https://indico.cern.ch/event/957688/contributions/4058338/attachments/2123212/3574056/2020_CMSOC_

KITHPC.pdf
• https://indico.cern.ch/event/957688/contributions/4058325/attachments/2123167/3573982/20201014_PIC_

HTCondor_BSC.pdf
• https://indico.cern.ch/event/936993/contributions

Resources

30

https://www.alcf.anl.gov/support-center/theta/theta-thetagpu-overview
https://indico.cern.ch/event/957688/contributions/4058330/attachments/2123148/3573944/RD_on_Connecting_Centers_with_limited_no_outbound_connectivity_OC_week_Oct_2020_1.pdf
https://indico.cern.ch/event/957688/contributions/4058338/attachments/2123212/3574056/2020_CMSOC_KITHPC.pdf
https://indico.cern.ch/event/957688/contributions/4058325/attachments/2123167/3573982/20201014_PIC_HTCondor_BSC.pdf
https://indico.cern.ch/event/936993/contributions

