
Organizing and Submitting
HTC Workloads

HTCondor Week 2022
Rachel Lombardi

Objective
Learn how to organize and submit workloads composed of

many jobs using HTCondor

- Know which files to consider when organizing HTC workload
submissions

- Plan and implement an organization structure for workload files on
the Access Point

- Utilize HTCondor submit file options to accommodate your
organization structure and data movement strategy

2
2

Objective
Learn how to organize and submit workloads composed of

many jobs using HTCondor

- Know which files to consider when organizing HTC workload
submissions

- Plan and implement an organization structure for workload files on
the Access Point

- Utilize HTCondor submit file options to accommodate your
organization structure and data movement strategy

3
3

Organizing HTC Workload Components

4
4

High Throughput Computing (HTC)
Solving a big problem by executing many small, self-contained tasks
and joining them.

Example: baking the world’s largest/longest cake

5Photos: Arun Sankar via https://www.theguardian.com/world/2020/jan/16/indian-bakers-rise-to-task-of-making-worlds-longest-cake 5

https://www.theguardian.com/world/2020/jan/16/indian-bakers-rise-to-task-of-making-worlds-longest-cake

High Throughput Computing (HTC)
Solving a big problem by executing many small, self-contained tasks
and joining them.

Example: baking the world’s largest/longest cake

6Photos: Arun Sankar via https://www.theguardian.com/world/2020/jan/16/indian-bakers-rise-to-task-of-making-worlds-longest-cake 6

Not pictured: how the bakers organized all the inputs (ingredients) and
outputs (individual cakes) before they were joined together. That’s what

we’re focusing on today!

https://www.theguardian.com/world/2020/jan/16/indian-bakers-rise-to-task-of-making-worlds-longest-cake

HTC Workloads as Input/Output Sets

7

Analysis

Today, we’re mainly going to think about workloads that use many
input files to produce many output files.

Inputs Outputs

Why organize?
By default, HTCondor
writes all job files (input,
output, HTCondor logs,
etc.) back to the same
place, which means your
home directory can look
something like this:

This makes it hard to find
things!

8
8

Why organize?
We can improve our
workflow by intentionally
organizing our input and
output files on the
Access Point.

9
9

Example: Text Analysis

open book by Soremba from the Noun Project
PY File by Arthur Shlain from the Noun Project
Number by Travis Avery from the Noun Project

Book text to analyze Output counts of
different words in book

$./wordcount.py Dracula.txt

10

Python script that counts the
frequency of different words

Organizational Plan For Our Files
books.submit

wordcount.py

input/
Dracula.txt
...

output/
count.Dracula.txt
...

We will assume that we want to put
our input files (books) in one folder,
and our output files (word counts) in
another folder.

11
11

Organizational Plan For HTCondor/System Files
books.submit

wordcount.py

input/
Dracula.txt
...

output/
count.Dracula.txt
...

log/
job.0.log
...

errout/
job.0.out
job.0.err
...

There are additional files that will be
produced by the job as well that we
should consider – the HTCondor log,
stdout and stderr. We’ll put these into
two folders.

12
12

Organizing and Submitting One Job

13
13

Shell Tools For Organizing Files
Shell commands:

mkdir <directory name>

mv <file_to_move> <destination>

The wildcard can specify groups of files:
ls *.txt - this will match all files that end with .txt

See Creating Files and Directories from Software Carpentry’s Shell Lesson for more details.

14
14

https://swcarpentry.github.io/shell-novice/03-create/index.html
https://swcarpentry.github.io/shell-novice

HTCondor Submit File Options for Organizing Files
Syntax Purpose Features

Transfer_output_remaps =

“file1.out=path/to/file1.out;

file2.out=path/to/renamedFile2.out”

Used to save output
files in a specific path
and using a certain
name

- Used to save output files to a
specific folder
- Used to rename output files to
avoid writing over existing files

Initialdir =

path/to/initialDirectory

Sets the submission
directory for each job.
When set, this is
becomes the base path
where output files will
be saved.

- Used to submit multiple jobs from
different directories
- Used to avoid having to write
some paths in other submit file
values

More Information: https://htcondor.readthedocs.io/en/latest/users-manual/file-transfer.html 15

Let’s Practice!

1. Log into an HTCondor Access Point

2. Download the tutorial and navigate inside the folder:
$ git clone https://github.com/CHTC/organizing-examples
$ cd organizing-examples
$ ls

3. Organize input files
$ mv *.txt input/

16
16

https://github.com/CHTC/organizing-examples

Our Project Directory
books.submit
wordcount.py
input/

Dracula.txt
...

output/
count.Dracula.txt
...

log/
job.0.log
...

errout/
job.0.out
job.0.err
...

books.submit

wordcount.py

input/
Dracula.txt
...

output/

log/

errout/

Before Job Submission After Job Submission

17

Start With the Job’s Executable and Arguments
books.submit

wordcount.py

input/
Dracula.txt
...

output/
counts.Dracula.txt
...

log/
job.0.log
...

errout/
job.0.out
job.0.err
...

18

submit file name: books.submit
executable = wordcount.py
arguments = Dracula.txt

queue

Organize, Transfer Inputs
books.submit

wordcount.py

input/
Dracula.txt
...

output/
counts.Dracula.txt
...

log/
job.0.log
...

errout/
job.0.out
job.0.err
...

19

submit file name: books.submit
executable = wordcount.py
arguments = Dracula.txt

transfer_input_files = input/Dracula.txt

queue

Transfer, Organize Outputs
books.submit

wordcount.py

input/
Dracula.txt
...

output/
count.Dracula.txt
...

log/
job.0.log
...

errout/
job.0.out
job.0.err
...

20

submit file name: books.submit
executable = wordcount.py
arguments = Dracula.txt

transfer_input_files = input/Dracula.txt

transfer_output_remaps =
12“count.Dracula.txt=output/count.Dracula.txt”

queue

Organizing Additional Job Files
submit file name: books.submit
executable = wordcount.py
arguments = Dracula.txt

transfer_input_files = input/Dracula.txt

transfer_output_remaps =
12“count.Dracula.txt=output/count.Dracula.txt”

log = log/job.$(ProcId).log
error = errout/job.$(ProcId).err
output = errout/job.$(ProcId).out

queue

books.submit

wordcount.py

input/
Dracula.txt
...

output/
count.Dracula.txt
...

log/
job.0.log
...

errout/
job.0.out
job.0.err
...

21

Queue One Job

Queue one job
to analyze Dracula.txt

22

submit file name: books.submit
executable = wordcount.py
arguments = Dracula.txt

transfer_input_files = input/Dracula.txt

transfer_output_remaps =
12“count.Dracula.txt=output/count.Dracula.txt”

log = log/job.$(ProcId).log
error = errout/job.$(ProcId).err
output = errout/job.$(ProcId).out

queue

Let’s Analyze One Book!
Fill out the “books.submit” file in the organizing files
tutorial to submit a single element of the workflow (one job).

23

submit file name: books.submit
executable = wordcount.py
arguments = Dracula.txt

transfer_input_files = input/Dracula.txt

transfer_output_remaps = “count.Dracula.txt=output/count.Dracula.txt”

log = log/job.$(ProcId).log
error = errout/job.$(ProcId).err
output = errout/job.$(ProcId).out

queue

23

Submitting a Full HTC Workload

24
24

Submitting the Whole Workload

To submit the whole
workload - processing all
of our input set, we
need to modify this
queue statement:

25

submit file name: books.submit
executable = wordcount.py
arguments = Dracula.txt

transfer_input_files = input/Dracula.txt

transfer_output_remaps =
12“count.Dracula.txt=output/count.Dracula.txt”

log = log/job.$(ProcId).log
error = errout/job.$(ProcId).err
output = errout/job.$(ProcId).out

queue

Queue Multiple Jobs
Syntax List of Values Variable Name

queue N Integers: 0 through N-1 $(ProcID)

queue Var matching pattern* List of values that match the
wildcard pattern.

$(Var)

If no variable name is
provided, default is $(Item)

queue Var in (item1 item2 …) List of values within parentheses.

queue Var from list.txt List of values from list.txt where
each value is on its own line.

26

First, List the Input Set

27

This can be a list of either
values (like parameters) or
input files.

Alice.txt
PandP.txt
Dracula.txt
…

Make a file called list.txt
containing the names of the
books we want to analyze:

$ pwd
../organizing-examples

$ ls input/ > list.txt

Add the Input Set to the Submit File
list.txt
books.submit
wordcount.py
input/

Dracula.txt
...

output/
count.Dracula.txt
...

log/
job.0.log
...

errout/
job.0.out
job.0.err
...

28

submit file name: books.submit
executable = wordcount.py
arguments = Dracula.txt

transfer_input_files = input/Dracula.txt

transfer_output_remaps =
12“count.Dracula.txt=output/count.Dracula.txt”

log = log/job.$(ProcId).log
error = errout/job.$(ProcId).err
output = errout/job.$(ProcId).out

queue book from list.txt

Replace Changing Values With Variables
submit file name: books.submit
executable = wordcount.py
arguments = $(book)

transfer_input_files = input/$(book)

transfer_output_remaps =
“count.$(book)=output/count.$(book)”

log = logs/$(ProcId).log
error = errout/$(ProcId).err
output = errout/$(ProcId).out

queue book from list.txt

list.txt
books.submit
wordcount.py
input/

Dracula.txt
...

output/
counts.Dracula.txt
...

logs/
job.0.log
...

errout/
job.0.out
job.0.err
...

29

submit file name: books.submit
executable = wordcount.py
arguments = Dracula.txt

transfer_input_files = input/Dracula.txt

transfer_output_remaps =
12“count.Dracula.txt=output/count.Dracula.txt”

log = log/job.$(ProcId).log
error = errout/job.$(ProcId).err
output = errout/job.$(ProcId).out

queue book from list.txt

Replace Changing Values With Variables

30

submit file name: books.submit
executable = wordcount.py
arguments = $(book)

transfer_input_files = input/$(book)

transfer_output_remaps =
12“count.$(book)=output/count.$(book)”

log = log/job.$(ProcId).log
error = errout/job.$(ProcId).err
output = errout/job.$(ProcId).out

queue book from list.txt

list.txt
books.submit
wordcount.py
input/

Dracula.txt
...

output/
counts.Dracula.txt
...

logs/
job.0.log
...

errout/
job.0.out
job.0.err
...

Prepare submit file for multi-job (full workload) submission

31

submit file name: books.submit
executable = wordcount.py
arguments = $(book)

transfer_input_files = input/$(book)

transfer_output_remaps = “count.$(book)=output/count.$(book)”

log = log/job.$(ProcId).log
error = errout/job.$(ProcId).err
output = errout/job.$(ProcId).out

queue book from list.txt

Let’s Analyze Many Books!

Our New Project Directory
books.submit
wordcount.py
input/

Dracula.txt Pride_and_Prejudice.txt Huckleberry_Finn.txt
Alice_in_Wonderland.txt Ulysses.txt

output/
count.Dracula.txt count.Pride_and_Prejudice.txt count.Huckleberry_Finn.txt
count.Alice_in_Wonderland.txt count.Ulysses.txt

log/
job.0.log job.2.log job.4.log
job.1.log job.3.log

errout/
job.0.out job.1.out job.2.out job.3.out job.4.out
job.0.err job.1.err job.2.err job.3.err job.4.err

Organized Workflow

32

Other Organizational Models

33
33

More Information: https://htcondor.readthedocs.io/en/latest/users-manual/file-transfer.html 34

HTCondor Submit File Options for Organizing Files
Syntax Purpose Features

Transfer_output_remaps =

“file1.out=path/to/file1.out;

file2.out=path/to/renamedFile2.out”

Used to save output
files in a specific path
and using a certain
name

- Used to save output files to a
specific folder
- Used to rename output files to
avoid writing over existing files

Initialdir =

path/to/initialDirectory

Sets the submission
directory for each job.
When set, this is
becomes the base path
where output files will
be saved.

- Used to submit multiple jobs from
different directories
- Used to avoid having to write
some paths in other submit file
values

Return Output to Specified Directory with InitialDir

35

File name: job.sub
executable = exec.py

initialdir = results
transfer_input_files = input.txt,

../shared_vars.txt

log = job.log
out = job.out
error = job.err

queue 1

submission_dir/
job.sub

exec.py
shared_vars.txt

results/
input.txt
output.txt

job.err
job.log

job.out

Separate Jobs with InitialDir

submission_dir/

job.submit

analyze.exe

job0/
file.in job.log job.err
file.out job.out

job1/
file.in job.log job.err
file.out job.out

job2/
file.in job.log job.err
file.out job.out

File name = job.submit

executable = analyze.exe
initialdir = job$(ProcId)

arguments = file.in file.out
transfer_input_files = file.in

log = job.log
error = job.err
output = job.out

queue 3

Executable
should be in the

directory with the
submit file, *not*
in the individual
job directories

Questions to Ask Yourself
How big are the files in my input / output sets?
What organizational strategy makes sense for the next steps in my
analysis?
- Do you want inputs in one folder and outputs in another folder? Use

transfer_output_remaps.
- Do you have many outputs for each job that you’d like to group together, but keep

separate from other job outputs? Do you want to keep inputs/outputs for the same job
together? Maybe use initialdir.

How do you want to organize the HTCondor/system files?

37
37

Acknowledgements
This material is based upon work supported by the National Science
Foundation under Cooperative Agreement OAC-2030508 as part of
the PATh Project. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

38
38

39

