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› Introduction and context

› Initial experiments in bringing capacity from HPC systems 

to the Open Science Pool

› HPC Annex and demonstration
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› “Bringing your own capacity” is a description of something 

we see happening in high-throughput computing.

› Researchers increasingly want to use compute capacity to 

which their HTCondor administrator does not have access.

› … from their usual access points, for their usual jobs.

Introduction
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› First Phase:

condor_annex (self-service cloud bursting tool)

› Second Phase:

split-starter/lumberjack (HPC systems w/o outbound networking)

XD-SUBMIT (HPC systems with outbound networking)

› Third Phase:

HPC Annex (self-service HPC system tool)

Context: History
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Bringing Your Own Capacity to the 

Open Science Pool - Initial 

Experiments



› HTCondor pool composed of federated compute resources from 

~100 member sites

› Sites have full autonomy, donate spare resources from their own 

pools

› Powered by:

GlideinWMS (managed by OSG/PATh staff)

• Submits “pilot jobs” – jobs that are Execution Points (EPs) that join the OSPool

• Is triggered by user demand

HTCondor-CE (sometimes managed by OSG/PATh staff)

• Accepts pilot jobs and runs them on the site’s batch system

Open Science Pool (“OSPool”) Quick Overview

(very simplified)
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› Exploratory work: “what will it take to do this?"

› Hook up HPC centers to the Open Science Pool using the same infrastructure 

that we use for every other site

› Steps for OSG/PATh staff:

 Obtain one user account from the HPC center for automated logins (SSH keypair, no 2FA)

 Ask the user to add the new account to their allocation

 Set up HTCondor-CE in front of the HPC site to accept pilot submissions and run them on 

the HPC site

 Add GlideinWMS “factory” configuration so pilots with the correct parameters get submitted

 Add GlideinWMS “frontend” configuration so the user's jobs can trigger pilot submission

 Test!

XD-SUBMIT
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› Only one project's jobs should result in pilot submission -- and only when 

desired

OSG/PATh staff need to keep track of user allocations and modify configs as 

needed

› Only jobs from that project should run on that pilot

Pilot needs to know what project "asked for it"

› Conversely: pilot should always be able to run jobs from that project

 Idle pilots still consume allocations (SUs)

› Pilots should be shaped to fit the user's workflow

Affects queue choice, requested resources, environment (e.g., loaded modules)

Considerations for Allocation-Based Submission
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› One account per site, all pilots use that account

› Users use separate allocations, but they all have the same 

file system permissions -- especially a problem with a 

shared file system

› Users can interfere with each other's files, or use up the 

account's disk quota

Drawback: Poor User Isolation
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› User has no control over the mechanisms for launching pilots

nor the number of pilots

nor the size of a pilot

nor the features

› User has no "panic button"

› User depends on OSG/PATh staff for changes

› Therefore OSG/PATh staff need to monitor closely to avoid 

wastage, and be quickly available to take care of user requests

Drawback: Staff Effort Needed
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› ~1.5 million core-hours for Chemistry and Grav. Wave Astronomy jobs

› Learned how to run on several HPC sites

Each HPC site is unique -- queues, sbatch parameters, proxies, environment, 

filesystems, etc.

Tooling was written to adapt site environments to run our users' jobs (which has 

been reused elsewhere on the Open Science Pool)

› Experienced need for a "self-service" model

For proper isolation, users must be able to use their own identities, not just their 

allocations

Straightforward changes shouldn't require contacting staff

Results and Lessons Learned
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› Use what we learned about running pilots on these HPC 

systems, but start them as the researcher.

› Not hard to do interactively, so let’s automate it.

› What about 2FA?

› Write a command-line tool that gives us the opportunity to 

prompt the researcher to log in.

A Self-Service Tool
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› Pilots are user-specific (and totally unshared).

› No staff involvement.

› Direct user control over allocation use and pilot “shape”; 

user can shut pilots off remotely.

› Pilots shut themselves off if idle.

› Requires users to (re-)authenticate each time they add 

their own capacity.

HPC Annex
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› I’ll mostly be following one of the recipes.
https://htcondor.com/web-preview/preview-ospool-byor/ospool/byor/stampede2

A Demonstration
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› Deployed at the OSG Connect access points. ☺

Stampede 2, Bridges 2, Expanse, and Anvil supported.

› Deployed. 

Work is in progress to make enabling the tool turning a single 

knob, ideally one that’s on by default.

› Targets a single use case.

Status
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› Cover additional use-cases:

DAGMan

Sharing an annex with coworkers

› Eliminate external infrastructure and admin involvement.

Maybe no “home pool” required.

Could we offer user-specific access points as a service?

Future Work
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Questions?
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