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Dynamic Workflows with Wo

s
Work Queue .,,o‘b

Work Queue is a framework for building large distributed applications that span thousands of machines drawn from clusters, clouds,
and grids. Work Queue applications are written in Python, Perl, or C using a simple API that allows users to define tasks, submit them
to the queue, and wait for completion. Tasks are executed by a general worker process that can run on any available machine. Each
worker calls home to the manager process, arranges for data transfer, and executes the tasks. A wide variety of scheduling and resource
management features are provided to enable the efficient use of large fleets of multicore servers. The system handles a wide variety of
failures, allowing for dynamically scalable and robust applications.

Install Work Queue

Work Queue has been used to write applications that scale from a handful of workstations up to tens of thousands of cores running on
supercomputers. Examples include the Parsl workflow system, the Coffea analysis framework, the the Makeflow workflow engine,

Who Uses Work Queue?

and Wavefront abstractions. The framework is easy to use, and has been used to teach courses in parallel computing, cloud computing,
distributed computing, and cyberinfrastructure at the University of Notre Dame, the University of Arizona, the University of
Wisconsin, and many other locations.

Learn About Work Queue

e Work Queue User's Manual

e Work Queue API (Python | Perl | C)

e Work Queue Example Program (Python | Perl | C)
e Example Application Repository.

e Work Queue Status Display.

e Getting Help with Work Queue

http://ccl.cse.nd.edu/workqueue
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import work_queue as wq
queue = wq.WorkQueue(9123)

for p in range(1,100):
task = wq.Task("./mysim -p {}".format(p))
task.specify_memory(1024)
queue.submit(task)

while not queue.empty():
task = queue.wait(5)
if task:
printf("task {} completed".format(task.id))
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import work_queue as wq

queue = wq.WorkQueue(9123)

for p in range(1,100):

task = wq.PythonTask(myfunc,p)
task.specify_memory(1024)

queue.submit(task)

while not queue.empty():
task = queue.wait(5)
if task:

printf("task {} completed".format(task.id))
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Some Work Queue Applications
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task = create(details);
submit( task );

task = wait( timeout );

Peter Bui, Dinesh Rajan, Badi Abdul-Wahid, Jesus |zaguirre, Douglas Thain,

Work Queue + Python: A Framework For Scalable Scientific Ensemble Agplication:
Workshop on Python for High Performance and Scientific Computing (PyHPC) at Supercomputing 2011.

Model Search Space



http://ccl.cse.nd.edu/research/papers/wq-python-pyhpc2011.pdf

A simple question:

What resources does each task need?
(memory, cores, gpu, ... )
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Packing Tasks Into Manycore Nodes

Allocate 2GB per Task A?
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Packing Tasks Into Manycore Nodes

Allocate 4GB per Task A?
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Packing Tasks Into Manycore Nodes

Mix Task A and Task B?

7
7

Dynamic Work Queue Worker

Workflow
Application

Work Queue Manager -

S —
N Sy e e e e e == -
—— e o o - -

VN -
~

12 cores and 12 GB RAM
. 4



CCTools

Packing Tasks Into Manycore Nodes

What if Function A Varies?
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Important Questions for Scheduling Tasks

We would like the user to tell us:

e How much memory does each task need?
e How many cores does each task need?

e Does this application use any GPUs?

But you might as well ask the user:
e How many roads must a man walk down?

4
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Example: Memory Usage in Colmena-XTB
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Thanh Son Phung, Logan Ward, Kyle Chard, Douglas Thain, "Not All Tasks are
Created Equal: Adaptive Resource Allocation for Heterogeneous Tasks in
Dynamic Workflows", WORKS Workshop at Supercomputing 2021. v
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Dynamic K-means Bucketing
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Example: Memory Consumption in TopEFT
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Memory consumption distribution
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Synthetic Distributions
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Memory consumption over time
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Metric - Average Task Efficiency (ATE): ATE(S) = — Z ¢ —tracks the ratio of resources a task uses

R to resources a task is given, on average.

1=

Colmena TopEFT Exponential | Uniform Normal Bimodal Trimodal
Whole 15.8 0.6 12.4 39.1 15.7 31.3 30.7
Machine
5% above 33.2 69.1 48.4 59.6 15.7 56.7 43.7
Max
K-means 43.9* 91.0 56.3 62.4 16.1 93.9 71.3
Bucketing
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Dynamic Task Shaping for High Throughput Data Analysis Applications in
High Energy Physics, Ben Tovar, Ben Lyons, Kelci Mohrman, Barry
Sly-Delgado, Kevin Lannon, Douglas Thain, IPDPS 2022.




TopEFT / Coffea Data Splitting Workflow
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Shaping the Size of Tasks

Dynamically update the size of chunks
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—  For a given target resource allocation, modify the size of future chunks according to

historical data (e.g., mem vs #events).

—  Tasks that exhaust resources are split in two or more.
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Dynamically Updating Chunksize to Memory Targets

chunksize actual size first allocated ——— measured
128K A 2GB
target memory:
2GB ) %’
initial chunksize: 8 64K - g
1K 2 qaa
user parameters:
setA
1K . .
0 729 0 729
tasks created tasks created
chunksize actual size splits first allocated ——— measured
512K
target memory:
1GB 12
initial chunksize: 8 956K -
256K 5
user parameters: 128K
setA 64K
0K - — 0 T
0 971 0 971

tasks created tasks created



How Many Eggs in the Nest?

Applications can have surprisingly complex resource
distributions that are unknown to end users.

Let the workflow layer aggregate observations and then
predict appropriate resource allocations.

Fit the nest to the eggs:

o Dynamically change task allocations to fit workers.

Fit the eggs to the next:

o Dynamically change task definitions to resource targets.
Continuing challenge: presenting end users with sufficient
information to be constructive, but not overwhelming.

4



How much info to present?




User Interface to Resources?

Host:

Project:

Owner:

Version:
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For More Information...

https://cctools.readthedocs.io
https://ccl.cse.nd.edu/software/workqueue

Quick Start:
conda install -c conda-forge ndcctools

dthain@nd.edu ptovar@nd.edu tphung@nd.edu

This work was supported by NSF Award OAC-1931348
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# CCTools Documentation

Docs » Software » Work Queue

About

Installation

Work Queue User's Manual

eee M < 0 & cetools readthedocs.o 5 O h + @
Getting Help
# CCTools Documentation
Docs » Software » Poncho

8 Work Queue

Overview Poncho Packaging Utilities

Getting Started About

Building a Work Quilee oty c o +

Running a Work QuiRl At
Writing a Work Qud # CCTools Documentation
Program
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Recommended PracliiS
clri’ Installation
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Advanced Topics Catalog Server
Further Information  poncho e
Copyright Commands Work Queue
Example JX Language
Specification File © Resource Monitor
Overview
Running resource_monitor
Output Format

Specifying Resource Limits
Snapshots

Integration with other CCTools
Monitoring with Condor
Monitoring functions in python

Further Information

« Previous Next »

Docs » Software » Resource Monitor

Resource Monitor User's Manual

Overview

resource_monitor is a tool to monitor the computational resources used by
the process created by the command given as an argument, and all its
descendants. The monitor works indirectly, that is, by observing how the
environment changed while a process was running, therefore all the
information reported should be considered just as an estimate (this is in
contrast with direct methods, such as ptrace). It works on Linux, and it can be
used in three ways:

« Stand alone mode, directly calling the resource_nonitor executable.

« Activating the monitoring modes of makeflow and work queue
applications.

« Asapython module to monitor single function evaluations.

resource_monitor generates up to three log files: a JSON encoded summary
file with the maximum values of resource used and the time they occurred, a
time-series that shows the resources used at given time intervals, and a list of
files that were opened during execution.

Additionally, resource_monitor may be set to produce measurement _
snapshots according to events in some files (e.g., when a file is created,
deleted, or a regular expression pattern appears in the file). Maximum
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Run Time Dependency Management

Manager Environment
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How do we ensure that all the tasks get a consistent,
minimal environment matching the manager?
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How to measure a single function call?

LFM - Lightweight Function Monitor
Python Interpreter ...
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Tim Shaffer, Zhuozhao Li, Ben Tovar, Yadu Babuiji, TJ Dasso, Zoe Surma, Kyle Chard, lan Foster, and Douglas Thain,
Lightweight Function Monitors for Fine-Grained Management in Large Scale Python Applications, IEEE International
Parallel & Distributed Processing Symposium, May, 2021. DOI: 10.1109/IPDPS49936.2021.00088 N
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Lightweight Function Monitors (LFMs)

Activate LFMs with an import and the @monitored keyword

In [7]: from resource monitor import monitored
from time import sleep

In [12]: | # declare a function to be monitored with the @monitored() decorator

@monitored()
def my function 1(wait for):
sleep(wait for)
return 'waitied for {} seconds'.format(wait for)

(result, resources) = my function 1(.1)
print(result, '{}'.format({'memory': resources['memory'], 'wall time': resources['wall time']}))

waitied for 0.1 seconds {'memory': 49, 'wall time': 101689}



