UNIVERSITY OF

5) NOTRE DAME

How Many Eggs Can You Fit in One Nest?
Dynamically Shaping High Throughput Workflows

Douglas Thain, Ben Tovar, and Thanh Son Phung
University of Notre Dame
HTCondor Week, May 23 2022

CCTools ~

. _

CCTools
HTCondor at Notre Dame —

. Notre Dame
submit Condor Status

_
Slots Cores

awoodard@nd.edu 976 3904
[l hhatami@nd.edu 41 41
M cbeaufi@nd.edu 370 370 EEEEER
acummini@nd.edu 311 311
Complete M jkinniso@nd.edu 193 291 H
jdiazort@nd.edu 275 275
M roidtman@nd.edu 261 261

-
[l kbarlock@nd.edu 217 217
ophelan1@nd.edu 98 98
kherring@nd.edu 58 58
[} smustiph@nd.edu 42 42
e -+ mwolf3@nd.edu 4
E Q mthomann@nd.edu 3
- Q. tgayle@nd.edu 1
n = pdonnel4@nd.edu 1
o) tperkin1@nd.edu 1
(&) btovar@nd.edu 1
nblancha@nd.edu 1
Unclaimed 2302
—— Matched 1333
> Preempting
Dyn a m I C 1(?v'\lanler s 10‘:5‘;1; - FECLIILL] SRS LT T T TRt
o L L]
Workflow Display Options
DR Sort:
Application DE— srow
P — Size:
- Scale:

https://condor.cse.nd.edu

https://condor.cse.nd.edu

Dynamic Workflows with Wo

s
Work Queue .,,o‘b

Work Queue is a framework for building large distributed applications that span thousands of machines drawn from clusters, clouds,
and grids. Work Queue applications are written in Python, Perl, or C using a simple API that allows users to define tasks, submit them
to the queue, and wait for completion. Tasks are executed by a general worker process that can run on any available machine. Each
worker calls home to the manager process, arranges for data transfer, and executes the tasks. A wide variety of scheduling and resource
management features are provided to enable the efficient use of large fleets of multicore servers. The system handles a wide variety of
failures, allowing for dynamically scalable and robust applications.

Install Work Queue

Work Queue has been used to write applications that scale from a handful of workstations up to tens of thousands of cores running on
supercomputers. Examples include the Parsl workflow system, the Coffea analysis framework, the the Makeflow workflow engine,

Who Uses Work Queue?

and Wavefront abstractions. The framework is easy to use, and has been used to teach courses in parallel computing, cloud computing,
distributed computing, and cyberinfrastructure at the University of Notre Dame, the University of Arizona, the University of
Wisconsin, and many other locations.

Learn About Work Queue

e Work Queue User's Manual

e Work Queue API (Python | Perl | C)

e Work Queue Example Program (Python | Perl | C)
e Example Application Repository.

e Work Queue Status Display.

e Getting Help with Work Queue

http://ccl.cse.nd.edu/workqueue

CCTools

import work_queue as wq
queue = wq.WorkQueue(9123)

for p in range(1,100):
task = wq.Task("./mysim -p {}".format(p))
task.specify_memory(1024)
queue.submit(task)

while not queue.empty():
task = queue.wait(5)
if task:
printf("task {} completed".format(task.id))

http://ccl.cse.nd.edu/workqueue

Dynamic Workflows with Wo

s
Work Queue .’o‘»

Work Queue is a framework for building large distributed applications that span thousands of machines drawn from clusters, clouds,
and grids. Work Queue applications are written in Python, Perl, or C using a simple API that allows users to define tasks, submit them
to the queue, and wait for completion. Tasks are executed by a general worker process that can run on any available machine. Each
worker calls home to the manager process, arranges for data transfer, and executes the tasks. A wide variety of scheduling and resource
management features are provided to enable the efficient use of large fleets of multicore servers. The system handles a wide variety of
failures, allowing for dynamically scalable and robust applications.

Install Work Queue

Work Queue has been used to write applications that scale from a handful of workstations up to tens of thousands of cores running on
supercomputers. Examples include the Parsl workflow system, the Coffea analysis framework, the the Makeflow workflow engine,

Who Uses Work Queue?

and Wavefront abstractions. The framework is easy to use, and has been used to teach courses in parallel computing, cloud computing,
distributed computing, and cyberinfrastructure at the University of Notre Dame, the University of Arizona, the University of
Wisconsin, and many other locations.

Learn About Work Queue

e Work Queue User's Manual

e Work Queue API (Python | Perl | C)

e Work Queue Example Program (Python | Perl | C)
e Example Application Repository.

e Work Queue Status Display.

e Getting Help with Work Queue

http://ccl.cse.nd.edu/workqueue

CCTools

|

ipanactuarlc auaua oo

import work_queue as wq

queue = wq.WorkQueue(9123)

for p in range(1,100):

task = wq.PythonTask(myfunc,p)
task.specify_memory(1024)

queue.submit(task)

while not queue.empty():
task = queue.wait(5)
if task:

printf("task {} completed".format(task.id))

N 4

http://ccl.cse.nd.edu/workqueue

Work Queue Architecture

Python Appl

= .

Work Queue API

B

noud

@rovid€°

Local Files and
Programs

Some Work Queue Applications

Nanoreactors ForceBalance Lobster
ab-initio Chemistry FF Optimization CMS Data Analysis

(es)
g 100 2 Pe————
872 100

T
: =
Adaptive Weighted Ensemble ™~
SHADHO
Low-Leve| API; Hyperparameter Optimization

P

task = create(details);
submit(task);

task = wait(timeout);

Peter Bui, Dinesh Rajan, Badi Abdul-Wahid, Jesus |zaguirre, Douglas Thain,

Work Queue + Python: A Framework For Scalable Scientific Ensemble Agplication:
Workshop on Python for High Performance and Scientific Computing (PyHPC) at Supercomputing 2011.

Model Search Space

http://ccl.cse.nd.edu/research/papers/wq-python-pyhpc2011.pdf

A simple question:

What resources does each task need?
(memory, cores, gpu, ...)

CCTools

Packing Tasks Into Manycore Nodes

Allocate 2GB per Task A?

Work Queue Worker

7
7

Dynamic
Workflow
Application

Work Queue Manager -

S —
N Sy e e e e e == -
—— e o o - -

VN -
~

12 cores and 12 GB RAM
. 4

CCTools

Packing Tasks Into Manycore Nodes

Allocate 4GB per Task A?

/’ \\
I L\
Dynamic I Work Queue Worker I “\
| (I
Workflow | L
Application I I |:
| (I
I P!
Work Queue Manager - I TA TA TA Il :
| (I
I p 1!
Do |
N / |
s 7
PV

12 cores and 12 GB RAM
. 4

CCTools

Packing Tasks Into Manycore Nodes

Mix Task A and Task B?

7
7

Dynamic Work Queue Worker

Workflow
Application

Work Queue Manager -

S —
N Sy e e e e e == -
—— e o o - -

VN -
~

12 cores and 12 GB RAM
. 4

CCTools

Packing Tasks Into Manycore Nodes

What if Function A Varies?

Work Queue Worker

7
7

Dynamic
Workflow
Application

Work Queue Manager -

S —
N Sy e e e e e == -
—— e o o - -

VN -
~

12 cores and 12 GB RAM
. 4

CCTools

Important Questions for Scheduling Tasks

We would like the user to tell us:

e How much memory does each task need?
e How many cores does each task need?

e Does this application use any GPUs?

But you might as well ask the user:
e How many roads must a man walk down?

4

CCTools

Example: Memory Usage in Colmena-XTB

- Memory consumption over time MAX? 5 Memory consumption distribution
. . ¢
251 L Ry ¥ 25 /
3 20 T U S 2 20 /
g Ll . % ° L] . g 0’
g 15 - ¢ " ‘ , 215 $
S ; .. 53 _ .| 18T : /
£ 10- it o '%.... " ot . s 10
o .'0 : . b ey 0 ° : "
"!:‘ . .:. \.o' : . LY ‘.. ., . l.} 5]
5 - . A I.o 0..‘ o
het™) -~ s H 0
) . - 0
0 0 50 100 150 200
0 50 1.00 150 200 tasks in sorted order
time flow

Thanh Son Phung, Logan Ward, Kyle Chard, Douglas Thain, "Not All Tasks are
Created Equal: Adaptive Resource Allocation for Heterogeneous Tasks in
Dynamic Workflows", WORKS Workshop at Supercomputing 2021. v

CCTools

Dynamic K-means Bucketing

o0

— Bucket 1
30— Bucket 2
® Task
Complete
Memory
(GBs)

10—

Time Flow

Example: Memory Consumption in TopEFT

500 -

w
o
o

memory (MBs)
N
o
o

100

Memory consumption over time

4001

oo e0e®y

O e OM‘W Cret ..V.'.&‘n-.'o:....

o' %% %

0 500 1000 1500

time flow

500 -

memory (MBs)

100 1

CCTools

Memory consumption distribution

400 1

w
o
o

N
o
o

L
——

-

/
1
_J

500 1000 1500
tasks in sorted order

4

w B
S o

Memory (GBs)

N
=

Memory (GBs)
2N w oA U oo
o = o o o o

o

Synthetic Distributions

Memory consumption over time Memory consumption over time

Memory (GBs)

T
1000
time flow

0 500

1000
time flow

1500 2000

Memory consumption distribution Memory consumption distribution

. 14 .
H
] 12
I3
) 10
28
£
g 6
=
4
2]
0
500 1000 1500 2000 () 500 1000 1500 2000

tasks in sorted order tasks in sorted order

Exponential Normal

40

30

20

Memory (GBs)

10

40

30

20

Memory (GBs)

10

Memory consumption over time

Memory consumption over time

. _

CCTools

Memory consumption over time

30 e 5 u 40
25
w w30
[+ [+
220 [}
))
o o
215 2 20
Q Q
L =
v 10
5
0 0
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
time flow time flow time flow
Memory consumption distribution Memory consumption distribution Memory consumption distribution
- ”-——-’ "
25
w w30
[+ [+
220 [}
))
o o
215 2 20
Q Q
N =
— 10
5
0 0
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

tasks in sorted order

Uniform

tasks in sorted order

Bimodal

tasks in sorted order

Trimodal

CCTools

n

Metric - Average Task Efficiency (ATE): ATE(S) = — Z ¢ —tracks the ratio of resources a task uses

R to resources a task is given, on average.

1=

Colmena TopEFT Exponential | Uniform Normal Bimodal Trimodal
Whole 15.8 0.6 12.4 39.1 15.7 31.3 30.7
Machine
5% above 33.2 69.1 48.4 59.6 15.7 56.7 43.7
Max
K-means 43.9* 91.0 56.3 62.4 16.1 93.9 71.3
Bucketing

TopEFT
Application
: ; pp ?_, s
Coffea <
. Framework)T final
Work Queue b tmp
L Scheduler)
- | /
Manager Local Worker XRootD XRootD .
Node Storage Nodes Proxy/Cache Data Federation

Dynamic Task Shaping for High Throughput Data Analysis Applications in
High Energy Physics, Ben Tovar, Ben Lyons, Kelci Mohrman, Barry
Sly-Delgado, Kevin Lannon, Douglas Thain, IPDPS 2022.

TopEFT / Coffea Data Splitting Workflow

one event

one chunk

w
1

memory (GB)
- b

64K 128K
events, r=0.79

input files
A
N
N] N \ J
processing processing processing processing
function function function function

partial
histograms

accumulating

function

/

accumulating
function

final histogram

Shaping the Size of Tasks

Dynamically update the size of chunks

allocation

o .
3— 8

o 29

% £8'g oo

> 2] o> oo

‘:57 P %ps

I3} 2 > il - © @

64K 128K
events, r=0.79

— For a given target resource allocation, modify the size of future chunks according to

historical data (e.g., mem vs #events).

— Tasks that exhaust resources are split in two or more.

>

if tasks too small
for given allocation,
new tasks are
created with a
larger chunksize.

worker node

task

task

task

allocation

allocation

allocation

C—

if tasks too big

for given allocation,
split, new tasks are
created with a
smaller chunksize.

allocation

Dynamically Updating Chunksize to Memory Targets

chunksize actual size first allocated ——— measured
128K A 2GB
target memory:
2GB) %’
initial chunksize: 8 64K - g
1K 2 qaa
user parameters:
setA
1K . .
0 729 0 729
tasks created tasks created
chunksize actual size splits first allocated ——— measured
512K
target memory:
1GB 12
initial chunksize: 8 956K -
256K 5
user parameters: 128K
setA 64K
0K - — 0 T
0 971 0 971

tasks created tasks created

How Many Eggs in the Nest?

Applications can have surprisingly complex resource
distributions that are unknown to end users.

Let the workflow layer aggregate observations and then
predict appropriate resource allocations.

Fit the nest to the eggs:

o Dynamically change task allocations to fit workers.

Fit the eggs to the next:

o Dynamically change task definitions to resource targets.
Continuing challenge: presenting end users with sufficient
information to be constructive, but not overwhelming.

4

How much info to present?

User Interface to Resources?

Host:

Project:

Owner:

Version:

earth.crc.nd.edu:9123 ¢ Worker Resources Manager Time
GPU
kmohrman- ~ Disk [1
workqueue-coffea Mlemory []
Cores
kmohrman ~ Norkers
Tasks |
7.4.5 FINAL 0 1 10 100 1k 10k 100k 1M

Task Progress

http://ccl.cse.nd.edu/software/workqueue/status

[l Send Data

[l Recv Data
Recv Status
Internal

I Waiting

" Appl Busy

http://ccl.cse.nd.edu/software/workqueue/status

For More Information...

https://cctools.readthedocs.io
https://ccl.cse.nd.edu/software/workqueue

Quick Start:
conda install -c conda-forge ndcctools

dthain@nd.edu ptovar@nd.edu tphung@nd.edu

This work was supported by NSF Award OAC-1931348

e0e < o © & cetools readthedocs.io [

CCTools Documentation

Docs » Software » Work Queue

About

Installation

Work Queue User's Manual

eee M < 0 & cetools readthedocs.o 5 O h + @
Getting Help
CCTools Documentation
Docs » Software » Poncho

8 Work Queue

Overview Poncho Packaging Utilities

Getting Started About

Building a Work Quilee oty c o +

Running a Work QuiRl At
Writing a Work Qud # CCTools Documentation
Program

o CD

" Project Names and {JRVSTROWSNS
Server

JX Language

ing
Managing Resource S SRR VIS ADouE

Recommended PracliiS
clri’ Installation

Logging facilities Chip .
Advanced Topics Catalog Server
Further Information poncho e
Copyright Commands Work Queue
Example JX Language
Specification File © Resource Monitor
Overview
Running resource_monitor
Output Format

Specifying Resource Limits
Snapshots

Integration with other CCTools
Monitoring with Condor
Monitoring functions in python

Further Information

« Previous Next »

Docs » Software » Resource Monitor

Resource Monitor User's Manual

Overview

resource_monitor is a tool to monitor the computational resources used by
the process created by the command given as an argument, and all its
descendants. The monitor works indirectly, that is, by observing how the
environment changed while a process was running, therefore all the
information reported should be considered just as an estimate (this is in
contrast with direct methods, such as ptrace). It works on Linux, and it can be
used in three ways:

« Stand alone mode, directly calling the resource_nonitor executable.

« Activating the monitoring modes of makeflow and work queue
applications.

« Asapython module to monitor single function evaluations.

resource_monitor generates up to three log files: a JSON encoded summary
file with the maximum values of resource used and the time they occurred, a
time-series that shows the resources used at given time intervals, and a list of
files that were opened during execution.

Additionally, resource_monitor may be set to produce measurement _
snapshots according to events in some files (e.g., when a file is created,
deleted, or a regular expression pattern appears in the file). Maximum

https://cctools.readthedocs.io
http://ccl.cse.nd.edu/software/workqueue

Run Time Dependency Management

Manager Environment

\
[I\

| I A
[: 1\
I : 11
I | 11
] : 1l
| : 1l
| \ 1l
| 7 11
[7 1
[<
]
\

How do we ensure that all the tasks get a consistent,
minimal environment matching the manager?

CCTools

How to measure a single function call?

LFM - Lightweight Function Monitor
Python Interpreter ...

-
,,’ ——————————— S

[

fork cow) | ' \

LFM I —_——— e === —— |

L LFM P

l L e I

function I N e il {1

< - : function I
: 1] '"-——-————————

import A import B I|: F———— - —-——— :
K / Resource Usage \I\' I importA | | importB |
L e e e B e e

y3
N

Tim Shaffer, Zhuozhao Li, Ben Tovar, Yadu Babuiji, TJ Dasso, Zoe Surma, Kyle Chard, lan Foster, and Douglas Thain,
Lightweight Function Monitors for Fine-Grained Management in Large Scale Python Applications, IEEE International
Parallel & Distributed Processing Symposium, May, 2021. DOI: 10.1109/IPDPS49936.2021.00088 N

CCTools

Lightweight Function Monitors (LFMs)

Activate LFMs with an import and the @monitored keyword

In [7]: from resource monitor import monitored
from time import sleep

In [12]: | # declare a function to be monitored with the @monitored() decorator

@monitored()
def my function 1(wait for):
sleep(wait for)
return 'waitied for {} seconds'.format(wait for)

(result, resources) = my function 1(.1)
print(result, '{}'.format({'memory': resources['memory'], 'wall time': resources['wall time']}))

waitied for 0.1 seconds {'memory': 49, 'wall time': 101689}

