

Feasibility Study of Measuring the Higgs Selfcoupling Using the Muon Collider

Rethinking about sig and bkg

- Signal: $\mu^-\mu^+ \rightarrow v_\mu \bar{v}_\mu HH$
 - Dominated by WW fusion mode, sub-dominate by Double Higgs-strahlung ZHH.
- Background, (b-Tag>=3 is effective!):
 - $\mu^{-}\mu^{+} \rightarrow v_{\mu}\bar{v}_{\mu}q\bar{q}q\bar{q}$, following should be included (but MadGraph Don't):
 - $\mu^{-}\mu^{+} \rightarrow v_{\mu}\bar{v}_{\mu}q\bar{q}H$, How to avoid double counting with $\mu^{-}\mu^{+} \rightarrow ZHH$?
 - $\mu^{-}\mu^{+} \rightarrow v_{\mu}\bar{v}_{\mu}ZH$, notice that this is NOT included in $v_{\mu}\bar{v}_{\mu}q\bar{q}H$ (why?).
 - $\mu^{-}\mu^{+} \rightarrow v_{\mu}\bar{v}_{\mu}q\bar{q}Z$, dominate by $\mu^{-}\mu^{+} \rightarrow v_{\mu}\bar{v}_{\mu}ZZ$. By assigning a very high mass to Higgs, we avoid double counting with $v_{\mu}\bar{v}_{\mu}ZH$.
 - $\mu^{-}\mu^{+} \rightarrow v_{\mu}\bar{v}_{\mu}W^{+}W^{-}$, should be easily-distinguishable from signal?
 - Other QCD process, negligible with less than 4 anti-kT jets.
 - Other QED process, with QED=6 neglected by MadGraph (should we include it?).
 - $\mu^{-}\mu^{+} \rightarrow q\bar{q}q\bar{q}$, very high cross section, but should be easy to deal with using a cut on Missing ET>0:
 - Dominate by $\mu^-\mu^+ \to W^+ W^-$, $\mu^-\mu^+ \to ZZ$, $\mu^-\mu^+ \to Z/a \to W^+ W^-$
 - $\mu^{-}\mu^{+} \rightarrow v_{\mu} l q \bar{q} q \bar{q}$, should be negligible with cut on lepton existence.

Current choices

- Signal: $\mu^-\mu^+ \rightarrow \nu_\mu \bar{\nu}_\mu HH$:
 - Dominated by WW fusion mode, sub-dominate by Double Higgs-strahlung ZHH.
- Background, $\mu^{-}\mu^{+} \rightarrow v_{\mu}\bar{v}_{\mu}q\bar{q}q\bar{q}$:
 - $\mu^{-}\mu^{+} \rightarrow v_{\mu}\bar{v}_{\mu}q\bar{q}H$, which too quarks are not decay from one Z boson.
 - $\mu^-\mu^+ \rightarrow \nu_\mu \bar{\nu}_\mu Z H.$
 - $\mu^-\mu^+ \rightarrow v_\mu \bar{v}_\mu q \bar{q} Z$, this channel includes $\mu^-\mu^+ \rightarrow v_\mu \bar{v}_\mu Z Z$.
 - Other QCD process with final state $v_{\mu}\bar{v}_{\mu}q\bar{q}q\bar{q}$.

Cross section comparison with CLICdp (3TeV)

Process	$\sigma/{ m fb}$	$\varepsilon_{\text{presel}}$ (%)	$\varepsilon_{\mathrm{BDT}}$ (%)	N _{BD}
HHueue; HH → bbbb	0.19	66	24	61
$HH_{\psi}\bar{\psi}; HH \rightarrow other$	0.40	5.4	3.2	1
$e^+e^- ightarrow q ar q q ar q$	547	0.16	0.16	3
$e^+e^- \rightarrow q\bar{q}q\bar{q}\nu\bar{\nu}$	72	1.8	0.68	17
$e^+e^- \rightarrow q\bar{q}q\bar{q}l\nu$	107	1.8	0.15	6
$e^+e^- \rightarrow q\bar{q}H\nu\bar{\nu}$	4.7	18	3.0	50
$e^\pm \gamma \to \nu q \bar q q \bar q$	523	1.2	0.09	11
$e^{\pm}\gamma \rightarrow qqH\nu$	116	2.7	0.14	9

Process	$\sigma/{ m fb}$
$- u_{\mu}\bar{ u}_{\mu}HH$	0.84
$\mu^+\mu^- o u_\mu \bar{ u}_\mu q \bar{q} Z$	69
$\mu^+\mu^- o u_\mu \bar{ u}_\mu HZ$	9.8
$\mu^+\mu^- o u_\mu \bar{ u}_\mu q \bar{q} q \bar{q}$	1.9
$\mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu q\bar{q}H$	6.6

doi :10.1140/epjc/s10052-017-4968-5

Comparing with CLICdp result at 3 TeV

We are not sure which specific Feynman diagram is included in their expression, but it seems that the results matches well.

MuCol Process	$\sigma/{ m fb}$	CLICdp Process	$\sigma/{ m fb}$	Ratio μ/e
$\nu_{\mu}\bar{\nu}_{\mu}HH$	0.84	$\nu_e \bar{e}_\mu H H$	0.69	1.22
$\mu^+\mu^- \rightarrow \nu_\mu \bar{\nu}_\mu q \bar{q} q \bar{q} $ (qqZ,ZZ,HZ,qqH)	87.3	$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	72	1.21
$\mu^+\mu^- \rightarrow \nu_\mu \bar{\nu}_\mu q\bar{q}q\bar{q}$ (qqZ,ZZ,HZ*,qqH)	80.1	$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	72	1.11
$\mid \mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu q\bar{q}q\bar{q}$ (qqZ,ZZ)	70.9	$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} q \bar{q}$	72	0.98
$\mid \mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu q\bar{q}H \text{ (w/o HZ)}$	6.6	$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} H$	4.7	1.4
$\mu^+\mu^- \to \nu_\mu \bar{\nu}_\mu q \bar{q} H \ (w/HZ)$	16.4	$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} H$	4.7	3.49
$\mu^+\mu^- \rightarrow \nu_\mu \bar{\nu}_\mu q \bar{q} H \ (w/ HZ^*)$	9.2	$e^+e^- \rightarrow \nu_e \bar{\nu}_e q \bar{q} H$	4.7	1.97

HZ*: With BR($Z \rightarrow q\bar{q}$) $\approx 69\%$, we estimated $\sigma(HZ, Z \rightarrow q\bar{q}) = 6.7$ fb.

Next step

- Fit
 - An idea is to fit all background to a curve (like MC in real analysis), then we fit the S+B with the curve + a gaussian. But it seems to me that the signal strength is so weak that the gaussian will just have zero amplitude.
- BDT
- DNN later
- Most paper are using BDT(FCC, CLIC, CMS, ATLAS), some are exploring DNN

Ŵ

Appendix: How does MadGraph select which diagrams to include

- By coupling order:
 - Weight assign as QED*2+QCD.
 - Quote from MadGraph authors: "So, the rule for the SM/MSSM is in fact very simple, we take the order having the LOWEST QED order resulting to a nonzero contribution. The motivation for such a rule (besides the fact that, in general, the QED part is sub-dominant) is for the matching procedure (for multi-jet production) where it's important that the multi-jet part is ONLY QCD."
- With same weight? Why are some diagrams neglected?
 - For example, $\mu^-\mu^+ \rightarrow v_\mu \bar{v}_\mu q \bar{q} H$ does not include $\mu^-\mu^+ \rightarrow v_\mu \bar{v}_\mu Z H$.

Appendix: From CLICdp

Process	σ /fb	$\epsilon_{\text{looseBDT}}$ (%)	NlooseBDT	$\epsilon_{\text{tightBDT}}$ (%)	NtightBDT
$e^+e^- ightarrow HH u ar{ u}$	0.59	17.6	766	8.43	367
Only HH \rightarrow bbbb	0.19	53.4	734	26.3	361
Only HH \rightarrow other	0.40	1.1	32	0.2	6
$e^+e^- \to q\bar{q}q\bar{q}$	547	0.0065	259	0.00033	13
$e^+e^- \rightarrow q\bar{q}q\bar{q}\nu\bar{\nu}$	72	0.17	876	0.017	90
$e^+e^- ightarrow q ar q q ar q ar l ar u$	107	0.053	421	0.0029	23
$e^+e^- \rightarrow q\bar{q}H\nu\bar{\nu}$	4.7	3.8	1171	0.56	174
$e^{\pm}\gamma \rightarrow \nu q \bar{q} q \bar{q}$	523	0.023	821	0.0014	52
$e^{\pm}\gamma$ – $qH\nu$	116	0.12	979	0.0026	21

Fig. 4 Distribution of the sum of the *b*-tag values for the inclusive $HH\nu\bar{\nu}$ and the $HH\nu\bar{\nu} \rightarrow b\bar{b}b\bar{b}\nu\bar{\nu}$ channel, both scaled by a factor 5000 for better visibility, and for the background processes. No selection is applied

