Progress Toward Constraint of the Cosmic Dawn from 21 cm Measurements with the OVRO-LWA Stage III

> Ruby Byrne 21 cm Cosmology Workshop Sept. 1, 2022

What is the OVRO-LWA?

- Owens Valley Radio Observatory (OVRO) Long Wavelength Array
- Located near Big Pine, California
- Dual-polarization dipole antennas (same antennas as the New Mexican LWA arrays and NenuFAR)
- Fully cross-correlated
- 15-85 MHz
- Currently undergoing the "Stage III" upgrade

Image source: Google Maps

The OVRO-LWA Stage III Team

Caltech / OVRO / IPL Gregg Hallinan (PI) James Lamb David Woody Mark Hodges Morgan Catha-Garrett Andres Rizo **Corey Posner Casey Law Rick Hobbs** Larry D'Addario Jack Hickish **Yuping Huang** Kathryn Plant **Ruby Byrne Ivey Davis** Jun Shi David Hodge Vinand Prayag Marin Anderson (PS) Andrew Romero-Wolf (co-PI) <u>University of New Mexico</u> Greg Taylor Jayce Dowell

<u>New Jersey Institute of Technology</u> Dale Gary (co-PI) Bin Chen Sherry Chhabra (NRL) Gelu Nita Brian O'Donnell Surajit Mondal

<u>Arizona State University</u> Judd Bowman (co-PI) Danny Jacobs Bharat Gehlot Katherine Elder <u>NUIG</u> Aaron Golden Dúalta Ó Fionnagáin

<u>Rice University</u> Andrea Isella (co-PI) Jason Ling

21 cm Cosmology with the OVRO-LWA

- Good *uv* coverage and plenty of short baselines
- Widefield for horizon-tohorizon imaging
- High redshift: $z \approx 16-100$
- Could probe the Dark Ages, Cosmic Dawn, X-Ray Heating
- Complementary to global 21 cm experiments

The OVRO-LWA: A Brief History

- Stage I: 2013-2014
- Stage II: 2015-2020
- Stage III: 2021-present

The OVRO-LWA: A Brief History

- Stage I: 2013-2014
- Stage II: 2015-2020
- Stage III: 2021-present

Stage I

- 2013-2014
- 251 antennas
- 5 outriggers
- LEDA correlator (Kocz et al. 2015)

Example Snapshot Image

Source: Marin Anderson and Morgan Catha

The OVRO-LWA: A Brief History

- Stage I: 2013-2014
- Stage II: 2015-2020
- Stage III: 2021-present

Stage II

- 2015-2020
- 283 antennas
- Addition of 32 fiber-fed outrigger antennas
- Longest baseline extended to 1.5 km
- Custom fiberlink board

Source: Marin Anderson and Morgan Catha

Stage II Results: M-Mode Mapping

- Eastwood et al. 2018
- All-sky mapping
- Custom analysis pipeline written in Julia
- Based on the formalism developed in Shaw et al. 2014, 2015

Stage II Results: 21 cm Limit

- Eastwood et al. 2019
- PS estimation pipeline based on m-mode analysis
- Non-constraining limit on the 21 cm PS of Δ_{21} < 10^4 mK at $z\approx 18.4$

The OVRO-LWA: A Brief History

- Stage I: 2013-2014
- Stage II: 2015-2020
- Stage III: 2021-present

Stage III

- 352 antennas
- 109 outriggers: 69 additional
- Longest baseline extended to 2.4 km
- Complete overhaul of the analog and digital backend

Source: Marin Anderson and Morgan Catha

Stage III: Signal Backend

• All data processing is on-site

Source: Gregg Hallinan

Stage III: Signal Backend

• Custom redesigned analog receiver boards developed by Larry D'Addario

Source: Larry D'Addario

Source: Gregg Hallinan

Stage III: Signal Backend

- Custom ADCs (Jack Hickish)
- 4 ADC boards mounted on SNAP2 boards

Source: Larry D'Addario

Source: Gregg Hallinan

Stage III Upgrade: Current Status

- Core upgrade is complete and undergoing commissioning
- Trenching for outriggers is ~90% complete

Photo credit: Marin Anderson

Cosmology with the OVRO-LWA Stage III

How can we improve upon the Eastwood et al. 2019 limit?

Cosmology with the OVRO-LWA Stage III

How can we improve upon the Eastwood et al. 2019 limit?

1. More antennas

Improved *uv* coverage and resolution

- Increased sensitivity to the 21 cm signal
- Reduced calibration error from improved *uv* coverage
- Long baselines help calibrate and deconvolve compact sources

Source: Yuping Huang

Cosmology with the OVRO-LWA Stage III

How can we improve upon the Eastwood et al. 2019 limit?

More antennas
Improved analog receiver board

Upgraded analog receiver boards

- Signal isolation for preventing cross-talk
 - RFI-tight enclosure for each signal channel
 - Individual power and ground for each channel
- Impedance matching to reduce signal reflections

Source: Larry D'Addario

Upgraded analog receiver boards

Signal reflection analysis: preliminary results

Source: Judd Bowman

Cosmology with the OVRO-LWA Stage III

How can we improve upon the Eastwood et al. 2019 limit?

1. More antennas

Improved analog receiver board
Updated data analysis methods

21 cm analysis pipeline will adopt best practices developed by the 21 cm community

- Improved RFI flagging (Greg Hellbourg)
- Improved beam modeling with holography measurements
- Foreground mapping with m-mode analysis (Xander Hall)
- Calibration with DWCal
- Power spectrum estimation with FHD/eppsilon
 - Snapshot processing NOT all-sky
 - Modified gridding kernel (Barry et al. 2019)
 - Foreground avoidance

Beam holography with the 40 m telescope Source: Gregg Hallinan

21 cm analysis challenges

- OVRO's RFI environment
- Mutual coupling: beams are perantenna
- Ionosphere

Conclusions

- 21 cm measurements with the OVRO-LWA could probe pre-Reionization cosmology
- Eastwood et al. 2019 developed a first limit on the signal
- Stage III upgrade is overhauling the instrument and will enable deeper 21 cm limits
 - Improved uv coverage and long baselines
 - Systematic-resistant signal backend
 - State-of-the-art data analysis

