

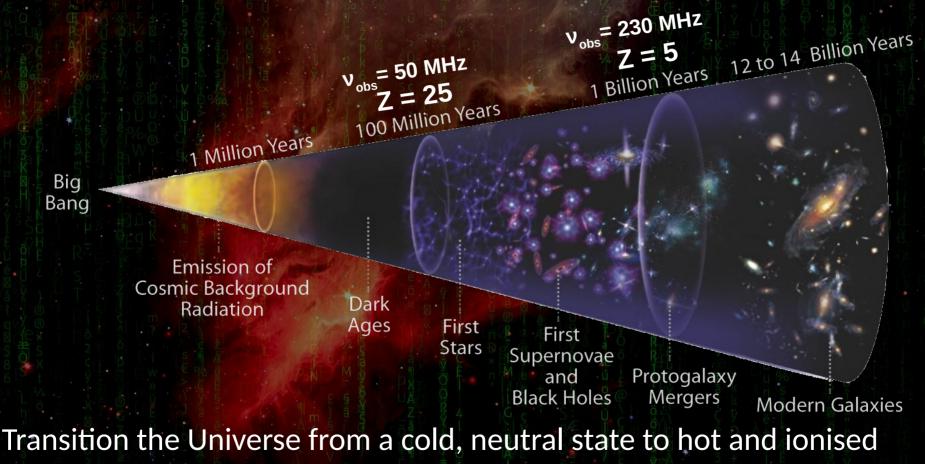
Deep Learning approach for HI regions identification and 21-cm signal recover from SKA-Low observations

21CM Cosmology Workshop 2022

Michele Bianco

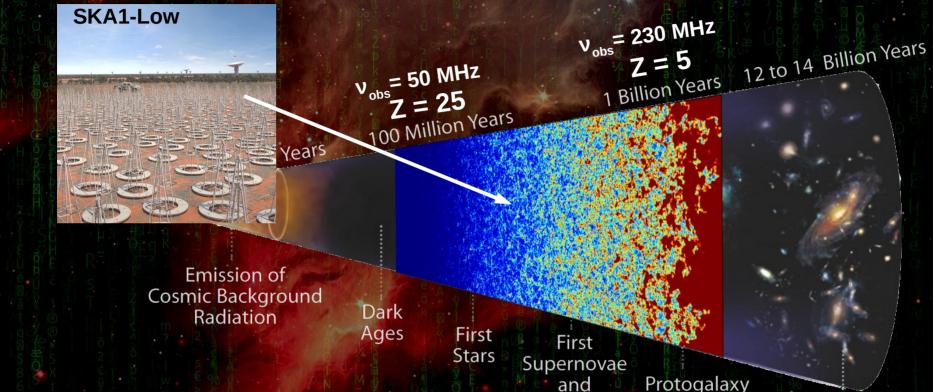
David Prelogović (SNS Pisa), Tianyue Cheng (EPFL), Sambit K. Giri (University Zurich), Emma Tolley (EPFL), Andrei Mesinger (SNS Pisa)

The Epoch of Cosmic Reionisation



Detect 21-cm signal from hydrogen in the Intergalactic Medium (IGM)

The Epoch of Cosmic Reionisation



Transition the Universe from a cold, neutral state to hot and ionised Detect 21-cm signal from hydrogen in the Intergalactic Medium (IGM)

 \bullet

Black Holes

Mergers

Modern Galaxies

Tomographic imaging of the 21-cm signal

Probe reionization process by observing the redshifted 21-cm signal

$\delta T_{b}(z) \propto x_{HI}(z)$

Square Kilometre Array (SKA1-Low): Images sequence of redshifted 21-cm signal at different observed frequencies.

3D tomographic dataset or a.k.a. 21-cm lightcones

Tomographic imaging of the 21-cm signal

Probe reionization process by observing the redshifted 21-cm signal

$\delta T_{b}(z) \propto x_{HI}(z)$

Square Kilometre Array (SKA1-Low): Images sequence of redshifted 21-cm signal at different observed frequencies.

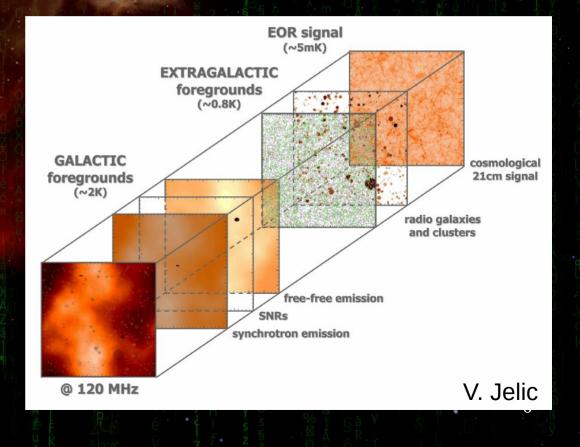
3D tomographic dataset or a.k.a. 21-cm lightcones

z = 13.2 v_{obs} = 100 MHz

Tomographic imaging of the 21-cm signal

SKA1-Low tomographic images of redshifted 21-cm signal challenges:

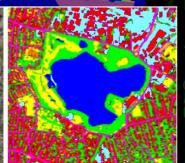
- Instrumental noise (signal ~ 5 K)
- Foreground emission (signal ~ 1 - 1000 K)
- Antennas gain errors
- Ionospheric refraction effects
- Radio frequency interference
- And more ...



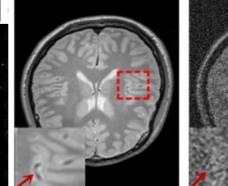
Deep Learning algorithm with Convolutional Neural Networks

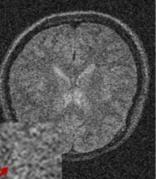
Modern Computer Vision technology based on AI and deep learning methods are able to identify object and/or de-noise images with great precision. (e.g.: self-driving cars, image satellites, medical image, etc...)

images



de-noising

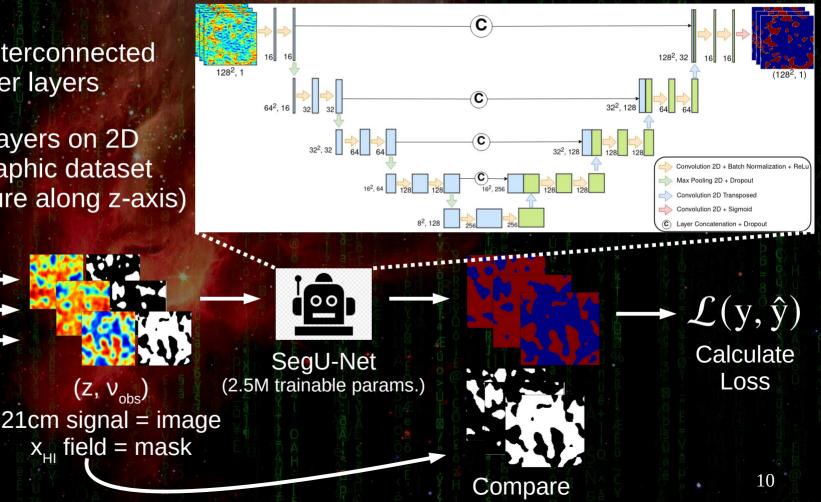




SegU-Net: Segmentation with U-Net for EoR (Bianco+ 2021) arXiv:2102.06713

 <u>U-Net:</u> Network with interconnected encoder/decoder layers

 Convolutional layers on 2D slice of tomographic dataset (rolling procedure along z-axis)



with ground truth

21cm tomography dataset

Mock Data for 21-cm Observations

EoR semi-numerical simulations:

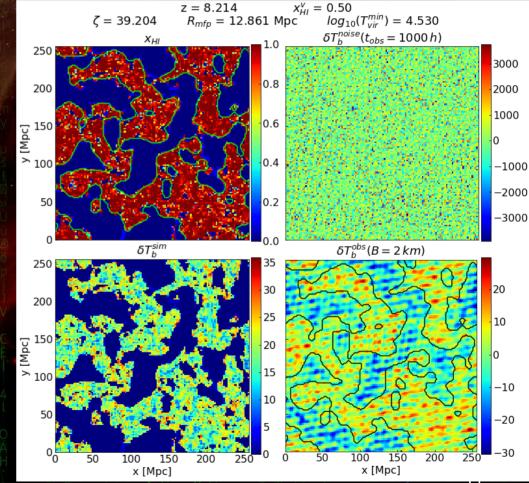
- 10k 21cmFAST lightcone simulation
 - Astrophysical parameters
 - → Redshift range: 7 9
 - Heating approximation: $\delta T_{b} \sim n_{HI}(z)$

Noise:

- SKA1-Low instrumental noise model (Giri+ 2018b)
- t_{obs} = 1000h of integration time

Interferometric Smoothing scale:

Gaussian kernel, B=2km



Mock Data for 21cm Observations

EoR semi-numerical simulations:

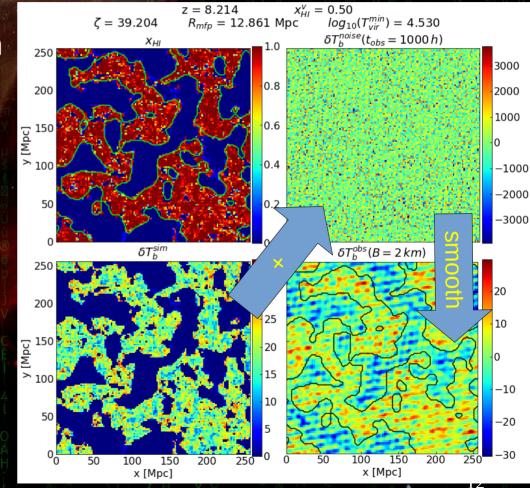
- 10k 21cmFAST lightcone simulation
 - Astrophysical parameters
 - → Redshift range: 7 9
 - Heating approximation: $\delta T_{b} \sim n_{HI}(z)$

Noise:

- SKA1-Low instrumental noise model (Giri+ 2018b)
- t_{obs} = 1000h of integration time

Interferometric Smoothing scale:

Gaussian kernel, B=2km



Mock Data for 21cm Observations

EoR semi-numerical simulations:

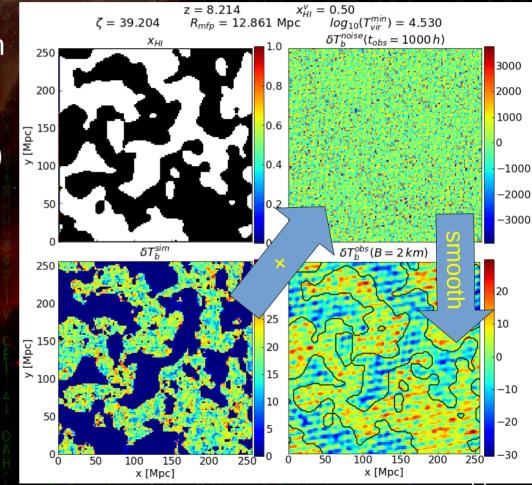
- 10k 21cmFAST lightcone simulation
 - Astrophysical parameters
 - → Redshift range: 7 9
 - Heating approximation: $\delta T_{b} \sim n_{HI}(z)$

Noise:

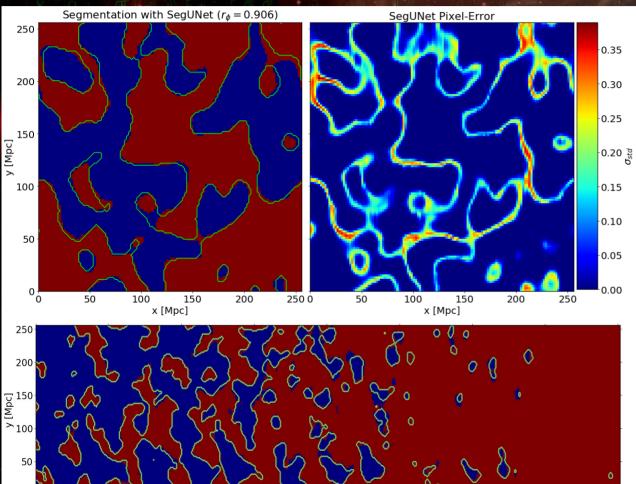
- SKA1-Low instrumental noise model (Giri+ 2018b)
- t_{obs} = 1000h of integration time

Interferometric Smoothing scale:

Gaussian kernel, B=2km



SegU-Net Results: Visual Evaluation & Uncertainty-map



9.5

10.0

10.5

11.0

8.0

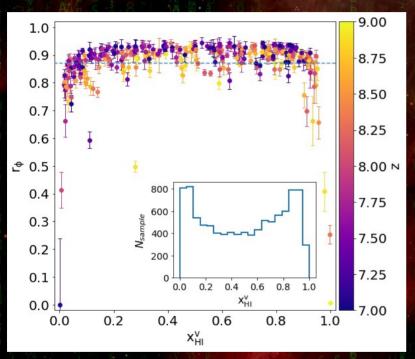
8.5

 Network binary field recovers with "confidence" large interconnected ionised/neutral regions

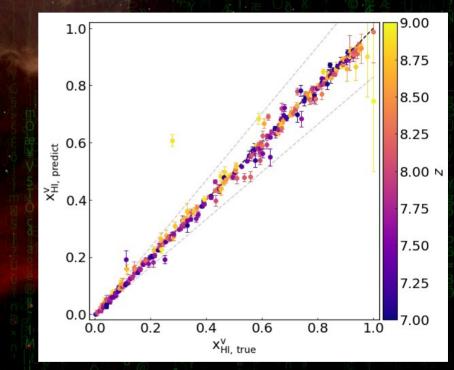
Higher uncertainty at Bottleneck and regions with low-dynamic range

14

SegU-Net Results : Correlation Coefficient r_{ϕ} and Reionisation History x_{HI}



Average accuracy: 85% better than state-of-the-art algorithm for segmentation

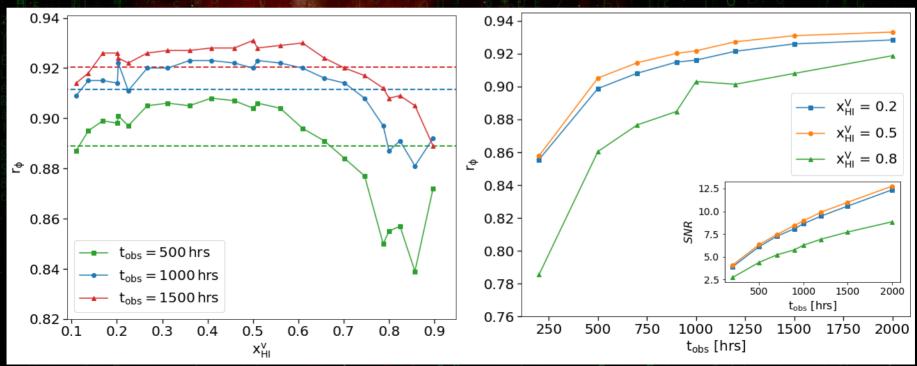


Recovered EoR history from the network binary field within ~0.5 σ difference

SegU-Net Results: Response to Noise level

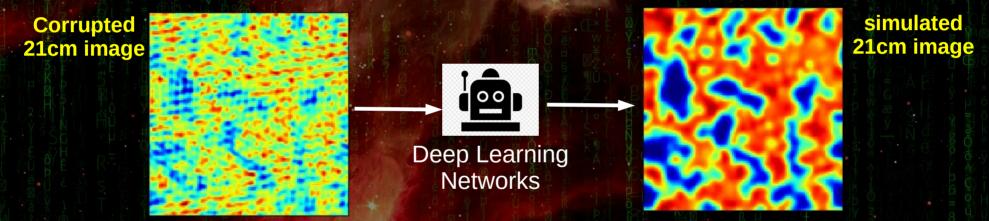
Test on different instrumental noise level: under- or over-estimate

- Predictions on <u>un-trained data</u> with t_{obs} = 500 2000 hrs
- t_{obs} > 500 hrs (SNR>3) same level of accuracy (~85%) as in the training
- Network accuracy affected by the dynamic range in the images



The Next Goal of the Project

Deep learning approach for HI regions identification.... and 21-cm signal recover from SKA-Low observations



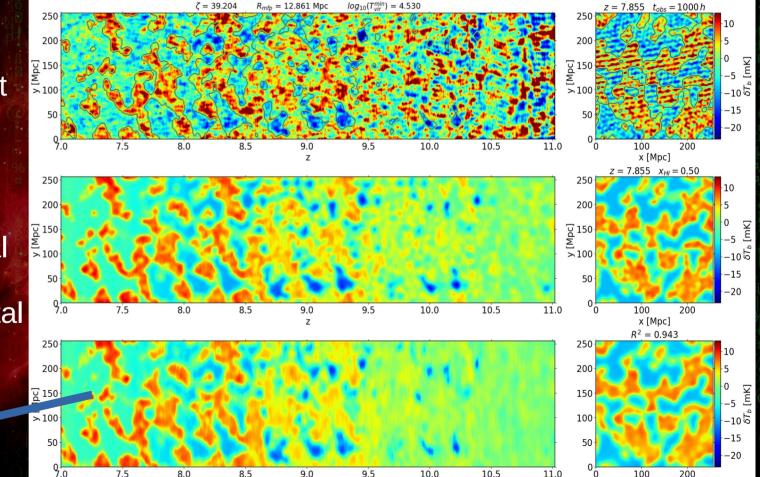
- 1) Use accurate modelling of the foreground and interferometry instrumental response (incomplete uv-coverage)
- 2) Data pre-process for foreground avoidance (wedge removal) and/or foreground mitigation techniques (PCA)
- 3) Use identified HI regions as prior information in the training process of the 21-cm recover network (RecU-Net)

RecU-Net Results: 21-cm Visual comparison

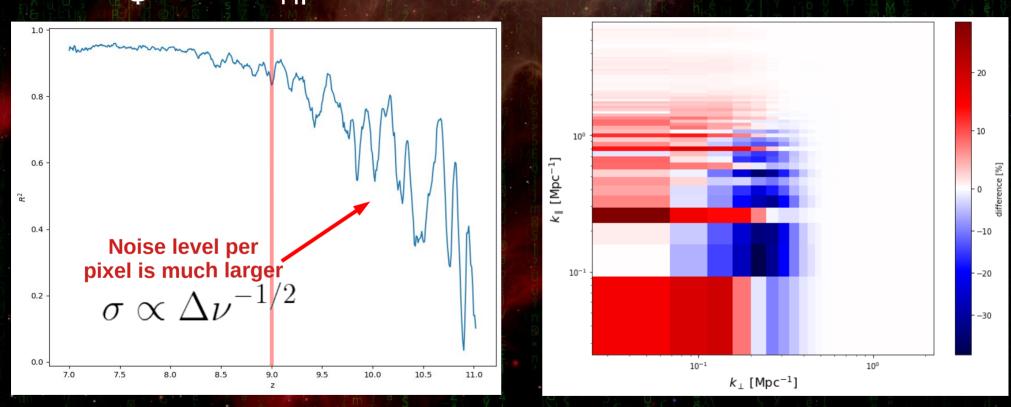
A first test:

- RecU-Net≈SegU-Net
 1) final activation
 2) changed target
 3) different loss
- Recover 21cm signal from images with SKA-Low instrumental noise

This is RecU-Net prediction



RecU-Net Results: r_{o} and x_{H} on entire Tomographic data



RecU-Net is extremely accurate ($R^2 \sim 92\%$) redshift range 7 < z < 9

21-cm Power spectra (top) recover within ~5% small scale correlation, k > 0.2 Mpc⁻¹ and redshift z < 9 ²⁵

Foreground Wedge Removal for SKA-Low

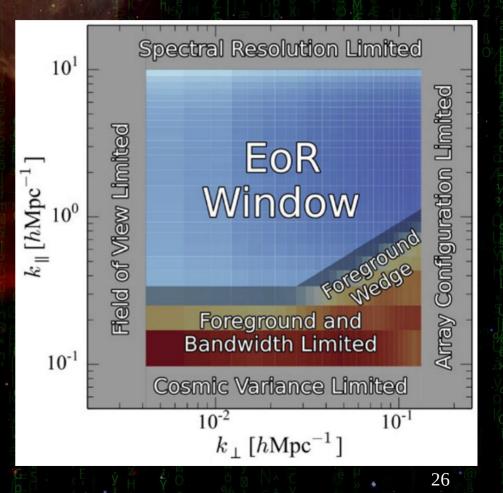
Advantage of SKA-Low long baselines: power spectra in the cylindrical coordinates $(k_{\perp}, k_{\parallel})$

Removing k-mode contaminated by foreground (Foreground Wedge) as a **avoidance technique**

$$k_{\parallel} \leq |k_{\perp}| \frac{H(z)}{1+z} \int_{0}^{z'} \frac{dz'}{H(z)} \cdot \sin\theta + b$$

Horizon limit angle: θ

(Pregolević+ 2021)



(Preliminary) 21-cm images Pre-process

Master student project @ EPFL:

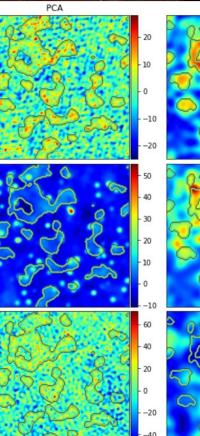
Investigate the efficiency of pre-processing

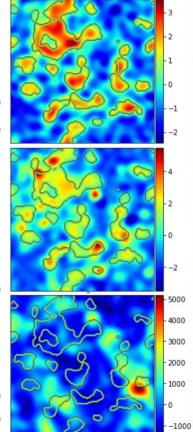
- Foreground Wedge Removal
- Principle Component Analysis (PCA) decomposition

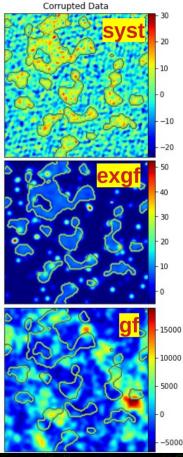
Wedge Removal works better on extragalactic point sources

PCA works well on synchrotron galactic foreground

Both fails at higher redshift (z>9)



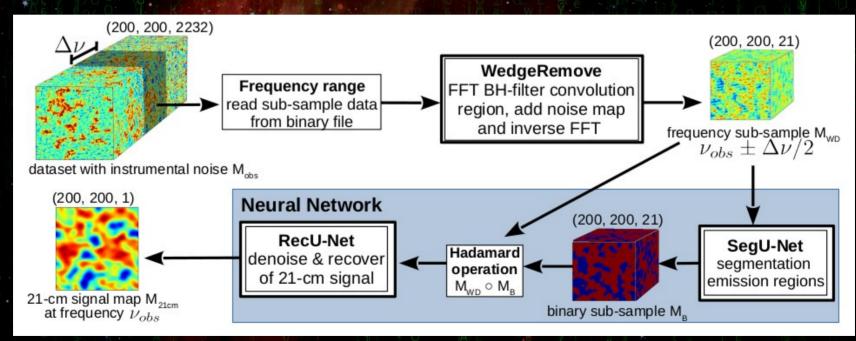




27

SERENEt Segmentation and Regression NEtwork

Combine the prediction of SegU-Net as additional input in Rec-Unet training step in order to include prior in the network training.



Proposal accepted for SKACH large HPC allocation projects at Pitz Daint @ CSCS (start 1th of August)

Summary & Future Work

Work done so far:

- U-Net are powerful tools for segmentation on noisy 21-cm images.
- U-Net can also be use to recover 21-cm signal from noisy data.
- Existing technique can be employed to pre-process data before training. to reduce the dynamic range of foreground contamination.

Open challenges list:

- Implement foreground contamination in the training dataset.
- Employ OSKAR simulation for radio interferometery effects.
- Feed prior information in training (combination of Seg and RecU-Net).
- Impact of the foreground pre-process step on the training and prediction.
- Combine foreground subtraction algorithm (PCA or Wedge + U-Net).