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Computational Problem of RFI

• Radio Frequency Interference (RFI) is significant issue for radio frequency 
telescopes.

• Especially for 21cm intensity mapping experiments, which need 
exceptionally high mapping sensitivities to detect BAO.

• Current generation intensity mapping experiments such as HIRAX, HERA, 
and CHIME are of order 1000 dishes. Use correlator to synthesize beams, 
take advantage of intensity and phase information from full array.

• Next generation arrays such as PUMA will require O(10,000) dishes. So 
being able to effectively process all dish data (in real-time) is 
computationally difficult.
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Computational Problem of RFI

● RFI is often narrow-band and transitory, these sources can be filtered by 

timestream or pixel thresholding methods.

● Can also filter at the level of the spectrometer output:

➢ Data has typically been massively reduced at this point into 

measurements of N spectral bins integrated over some time (for BMX 

N = 2048, t~0.1s)

➢ Easy on resources, but necessarily lossy

● Or filter at the level of input waveform:

➢ Working with raw digitized signal after the front-end amplifiers and 

before spectrometers – minimizes data loss

➢ Massive data rate: typically ~2GB/s per channel => 40TB/s for next-

gen array! Roughly half the current world internet traffic.

➢ Must be processed in real time because storage of this volume is 

impossible!



Computational Problem of RFI

• Current spectral methods include linear algebraic methods (SVD, PCA) and 

Machine Learning (ML)

• Supervised ML methods include K-nearest neighbors, random forest 

classifiers, long short-term memory (LSTM), You Only Look Once (YOLO), 

and Convolutional Neural Networks (CNN).

• Unsupervised ML more desirable. Methods include Convolutional Auto-

Encoders (CAE) and Generative Adversarial Networks (GAN).

• We propose a novel Deep Convolutional Neural Network method for 

unsupervised detection and removal of RFI at the raw timestream level.



Baryon Mapping Experiment (BMX)

• BMX telescope is 21-cm prototype at BNL, technology demonstrator for 

PUMA (arxiv: 1907.12559, puma.bnl.gov) 

• BMX design and calibration observations described in O’Connor et al. 

(arxiv: 2011.08695)

• Four zenith pointing off-axis parabolic dishes, frequency range 1.1-1.55 

GHz. Objective is to develop next-gen hardware and software, observe 

local HI (Milky Way and galaxies at z < 0.3)

BMX and HI4PI images of HI in Milky Way



BMX – Hardware RFI Mitigation

• Important to minimize RFI that 
enters system to simplify post-
processing. Use site features, 
shielding.

• BMX has double-walled 
enclosure with shielded 
bulkhead connections and 
waveguide air vent to suppress 
RFI from backend electronics.

• Contained in weather enclosure 
made of Al T-slot frame and Al-
PE composite panels for UV 
resistance.



BMX – Hardware RFI Mitigation

• RFI enclosure provides 75-90dB 
of RFI suppression across band 
in lab tests

• In field, local RFI features in 
observations completely 
suppressed to below noise floor. 

• RFI marked in red, 21cm line 
(1420.4 MHz in rest frame) 
unmarked

• Are still RFI non-local sources 
(including GPS, TV, cell phones, 
and air traffic control) and 
foregrounds that are not 
suppressed by shielding
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Non-Gaussian Signal Recognition

● NN potentially very good at recognizing RFI

● Signal separation typically requires knowledge of all potential RFI 

waveforms to train NN

● We propose an alternative:

○ Astrophysical signals of interest are from thermal sources, so they are 

Gaussian random fields (amplitude and phase Gaussian random 

distributed)          

=> statistically completely defined by their power spectrum

○ Majority of RFI sources are attempts at communication                    

=> they are maximally non-Gaussian 

○ Can use non-Gaussianity of RFI to distinguish it

○ (This will also detect non-stationary sky signals, such as FRBs. 

Further processing will be necessary to distinguish such sources.)



Non-Gaussian Signal Recognition

● Let g be the gaussian signal (including noise) and ng be the contaminating 

non-Gaussian signal 

s = g + ng

● If you know the ng, you can train a neural network so that

s – NN(s) = g

=> NN(s) = ng

● The problem is that we don’t know either g nor ng, just s



Non-Gaussian Signal Recognition

● Say you can generate a new (known) Gaussian signal with the same 

spectrum as g, call it g’.

● Create a new signal:

○ s’ = s + g’ = g+ng + g’

○ (Or more properly:  s’ = (1-λ2)1/2s + λg’ = (1-λ2)1/2(g + ng) + λg’  )

● Train neural network so that

○ s’ - NN(s’) = λg’

● If NN(s’) picks up non-Gaussian part, it will improve the loss function

● If NN(s’) could pick up non-Gaussian + intrinsic gaussian, it could do 

even better -- but it cannot possibly do this, because it is theoretically 

impossible to distinguish g and g’

● So: network will find the compressible pieces of information that are best 

at lowering the variance – which will be RFI since g is (nearly) 

incompressible

● There is the curious case of λ=0, in which we are solving for s - NN(s) = 0

and no additional known Gaussian signal is necessary for training.



“U-Net” Neural Network

• We use a neural network that consists of an “encoder” and “decoder” 

network. 

• Each step is a linear operation that reduces/increases the size of the array, 

potentially with non-linear activation functions between, and a dropout 

function before the final linear down sampling step.

• Forcing data through a “choke point” of minimal dimension forces the NN 

to learn a few parameters that explain the most features of the full data, 

which is precisely what we need to distinguish non-Gaussian signals. 



It Works!

● Run for 30 epochs with 100k training datasets, 10 test datasets

● Baseline case where input to network is 

s’ = g+ng + g’ 

● Parameterize goodness of fit by RMS error:                                    

ERMS = sqrt((S_recov - s’)^2 / Np)

● For baseline case average RMS error across test cases is: ERMS = 0.022



Optimizing NN

● Fit improved with normalization if λ is small.

● λ=0 case works very well, and we no longer need g’ which saves 

processing time. 

● RMS error reduced to ERMS = 0.004

● Recovered RFI fits input envelope shape better, amplitude of recovered 

signal away from input RFI region smaller.



Optimizing NN

● Error in recovered timestream can be further improved by optimizing the 

number and size of steps in encoder/decoder network.

● Optimal architecture found used 3 hidden dimension steps, the first two 

with 1024 elements, and third with 16. 

● RMS error reduced to ERMS = 0.0037



Multiple RFI Events

● We can fit for more than one RFI signal in the same timestream, but 

recovery is degraded.

● Fit improved by increasing size of final phase of encoder to give more 

degrees of freedom. Using zdim=32 instead of zdim=16, ERMS = 0.012

● Can avoid fitting multiple RFI events in one timestream in most cases by 

judicious choice of length.



RFI Morphology

● Also tested long period sinusoidal RFI morphology, potentially with sign-flip 

at random location. 

● This emulates a bit-flip in a binary phase-shift keying (PSK) digital signal.

● With no sign-flips we find ERMS = 0.0032, with sign-flips: 0.0048.

● NN is good at fitting sinusoidal variation, even in presence of discontinuous 

features like sign-flips



Power Spectrum Recovery

● Want to verify that RFI removal does 

not alter sky signal.

● After subtracting RFI event with 

amplitude 10x sky signal, input and 

recov timestreams vary by 0.56%.

● Power spectrum of recovered 

timestream consistent with spectrum of 

input timestream. 

● Chi^2 = 0.0496, with 31 degrees of 

freedom, for a p-value of 1 to within 

3x10^-38.



Power Spectrum Recovery

● Input spectrum is recovered even in PS 
bins where RFI power is 10x higher! 1σ
error bars smaller than data points.

● Residuals show there is detectable bias 
when averaging over many timestreams: 
1% increase in noise across band, and up to 
7% bias in RFI contaminated bins.

● Most likely a noise bias that could in 
principle be calibrated. (Future work.) 
Even without correction, significantly 
better than throwing away data from RFI 
contaminated frames. 

● This is also maximally pessimistic case in 
which every frame is RFI contaminated. In 
reality, only 0.1% to 1% of frames are 
typically contaminated by RFI, taking 
BMX data as our reference.



Sky Data from BMX

● Ran on observed sky data from BMX!
● Able to detect several RFI morphologies.
● Does not detect RFI that looks like white noise of increased amp. Would have to 

flag and cut timestream using standard amp thresholding method.



Summary

● We have developed a NN for detecting and removing RFI

● Optimized NN, and tested on different RFI morphologies

● Run on real sky data from BMX observations

● Use in real-time for next-gen telescope arrays will likely require hardware 

implementation of NN, such as in a Radio Frequency System-on-Chip 

(RFSoC). Will require significant work!

● Paper on method on arxiv, updated version with PS results soon. 

https://arxiv.org/pdf/2203.16607.pdf


