

Characterization of the LWA Antenna and Station Beam Pattern

Christopher DiLullo

NPP Fellow, Observational Cosmology Lab (665), NASA GSFC

Outline

- Measuring the LWA Antenna Impedance Mismatch
 - Motivation
 - Current Efforts
 - Results
- Simulating the Sidelobes of the LWA-SV Beam Pattern
 - Motivation and Methodology
 - Preliminary results
- Future Efforts and Summary

Measuring the LWA Antenna Impedance Whitham Reeve (Reeve Engineers), Brian Hicks (NRL), Jayce Dowell (UNM)

- Problems:
 - Impedance mismatch (IMM) between antenna and front end electronics (FEEs) will cause reflection of incident power
 - 2. Direct measurement of the IMM at the antenna feed points is difficult without custom calibration and testing fixtures
- Motivations:
 - 1. Improved absolute calibration of the LWA Low Frequency Sky Survey
 - 2. 21 cm Cosmology experiments using LWA antennas

Making the Measurements

- Equipment:
 - Keysight N9917A Microwave Analyzer in *Network Analyzer* mode
 - 2 Test cables: LMR-240 with N-M and SMA-M, 37 ft (11 m) long
 - 50 Ω termination, N-F
 - Custom Calibration Fixtures (Brian Hicks, NRL)
 - Custom Test Fixtures (Brian Hicks)

Moving the Reference Plane: Custom Fixtures

Calibration Fixtures (pads at feedpoints)

Test Fixtures (direct connection to feedpoints)

Moving the Reference Plane: Custom Fixtures

Calibration Fixtures (pads at feedpoints)

Test Fixtures (direct connection to feedpoints)

Antenna Installation and Measurements

- Measure reflection coefficient, S11
- Frequency | Mag (dB) | Phase (deg)
- Convert to complex impedance

Impedance Results

North-South Dipole

Impedance Matching Efficiency (IME)

- S11 = Γ = A $\cdot e^{i \cdot \phi}$
- $\Gamma = (Z Z_0) / (Z + Z_0)$
- IME = $1 |\Gamma|^2$
- Assumes $Z_0 = 100 + 0i \Omega$
- Model is from Hicks et al. (2012)

Impedance Matching Factor (IMF)

 Try using Impedance Matching Factor, which accounts for the actual impedance of the FEE

$$IMF = \frac{\left(1 - \left|\Gamma_{ANT}\right|^{2}\right)\left(1 - \left|\Gamma_{RX}\right|^{2}\right)}{\left|1 - \Gamma_{ANT}\Gamma_{RX}\right|^{2}}$$

Rudge, A., Milne, K., Olver, A., Knight, P., The Handbook of Antenna Design, Vol. 1 and 2, Peter Peregrinus Ltd, 1986

• This reduces to IME when $\Gamma_{RX} = 0$

FEE Impedance Measurements

FEE Impedance Measurements

DG85AQ Vector Network Analyzer Software

DG8SAQ Vector Network Analyzer Software

V2.0

IME vs IMF

13

Correcting Sky Survey Data

IME

Simulating the Sidelobes of the LWA-SV Beam

- Beamformed approach to detecting the global 21 cm signal (DiLullo et al. 2020 & 2021)
- Custom "achromatic" beamforming framework keeps main lobe constant, but sidelobes have lots of structure
- What contribution do the sidelobes have to the measured spectrum/residuals?
- Following methods of Price (2022) (submitted to PASA)

Simulating the Sidelobes of the LWA-SV Beam

•

ullet

ullet

۲

Sidelobe Contributions Simulated Spectra Simulate beam pattern across Full Beam Spectrum 800 Full Beam - Gaussian 2750 Gaussian Mainlobe Spectrum MSF Fit frequency for given pointing and LST 2500 Fit circular Gaussian to the main lobe 700 2250 Multiply each with a sky model to simulate the observed spectrum Temperature [K] 1750 ₆₀₀ Temperature [00 Difference yields sidelobe 1750 contributions 1500 Fit a N=5 MSF to the sidelobe contributions to estimate contribution¹²⁵⁰ 400 to residuals after foreground 1000 subtraction 300 60 65 70 75 80 85 60 65 70 75 80 85 Frequency [MHz] Frequency [MHz] 16

XX Data Overview

Sidelobe Residuals

Sidelobe Residuals

17

Current and Future Efforts

Impedance Measurements:

- 1. Planning to make measurements at the New Mexico stations (LWA1, LWA-SV, and LWA-NA) this Fall
- 2. Need more v2.0 FEE boards to test (November-ish)

Sidelobe and Beam Characterization:

- 1. Investigating alternative beamforming frameworks which might lower sidelobe contributions
- 2. Can simulations be used to help model out sidelobe contribution?

Summary

- We have measured the impedance of the LWA antenna and front end electronics to better understand the effects of mismatch. Improved calibration of LWA LFSS data
- Planning to make measurements at the stations in New Mexico and need to evaluate the newest version of the FEE (v2.0)
- Sidelobe contribution to beamformed 21 cm observations can be simulated (to first order) in a simple fashion
- Simulations are consistent with observed residuals
- Alternate beamforming frameworks needed to lower sidelobe amplitudes

Thank You!

Contact: christopher.dilullo@nasa.gov

Calibration Fixtures

Short

Calibration Fixtures

Open

Calibration Fixtures

Load