HIRAX Electromagnetic Design

21cm Cosmology Workshop University of Wisconsin, September 1st 2022 Benjamin Saliwanchik

HIRAX: Who are we? Where are we?

Telescope Mechanical Assembly

- Low telescope mount improves stability, improves ease of access to feed, reduces cost, still allows necessary +/-30 deg elevation range from zenith
- Simulations say fiberglass receiver column extremely robust: safety factor of 100 and feed displacement <1mm relative to dish under SA record wind speeds
- Easier to position feed, adjust focal point, reduces polarized scattering and beam asymmetry vs feed leg configuration

Receiver Support Structure

- Different configurations of the receiver support mechanism were simulated, including multiple feed legs, and a central feed column with varying diameter.
- A fiberglass feed column was found to be optimal for RF as well as mechanical criteria.
- Larger diameter feed columns generally have lower loss (less material in forward beam path if diam > feed), sidelobe amp varies with freq but generally lower.

Feed Legs

- However, if you have large feed (possibly Vivaldi) feed legs may be mechanically easier.
- CHORD has selected feed legs, so HIRAX is motivated to use same design for production streamlining.
- Evaluated RF quality of feed leg design: sidelobes several dB worse, but main beam "shelf" eliminated.

Feed leg sims by Sindhu Gaddam (UKZN)

Feed Legs

- S11 with feed legs comparable to feed column. ~2dB worse at 550 MHz, ~2dB better at 650 MHz.
- Gain varies across band, but lower for legs on average. Lower by 1dB at 600 MHz and 800Mhz, and higher by <1dB at 700 MHz.
- Most likely HIRAX will follow CHORD design for cost reduction of using existing mechanical design, and of knowledge transfer to SA manufacturer.

Symmetrizing Cables

- Feed power cabling was found to be a significant source of potential asymmetry in the beam, even for small diam wire.
- Data is on RFoF, not relevant.
- Plots show beams at 400MHz with 15 AWG wire (1.5mm diam) running [top] from feed to dish edge, [middle] from feed to dish vertex 18cm offset from boresight (at column diam), and [bottom] along feed boresight to dish vertex
- Less mechanically convenient with feed legs. Still potential to align cable with vertex, possibly small conduit for protection. Updated EM sims underway to assess impact.

- Also examined dish f-number.
- The instrument delay kernel shows how foregrounds leak from small Fourier modes into large, cosmologically interesting, modes. Want to minimize width.
- Dashed lines show shallower dishes better for single dish, because reduces internal scattering.
- However, in array configuration deeper is better, because it reduces intra-dish scatter.

- Crosstalk amplitude (S31) reduced in array with deeper dishes, but aperture efficiency also reduced.
- Lower f/D ratios are also increasingly difficult to mechanically support
- Initially selected f/D = 0.23, which reduces S31 by ~10dB relative to the prior 0.25 design, while only reducing efficiency by ~5%. However, now considering 0.21, which would reduce S31 by ~20dB and efficiency by ~10%. (Some efficiency may be recoverable by feed illumination changes.)

- With f/D=0.21 entire feed+can structure sits well below dish rim. Significantly reduces crosstalk.
- Gain is also reduced on average, and sidelobes potentially increased.

Focal ratio sims by Sindhu Gaddam (UKZN)

focal ratio 0.21 focal ratio 0.23

- Gain degraded by 0.55dB on average, 14% reduction in power.
- May be able to recover some sensitivity by changing feed can to illuminate dish better. Sims underway.
- S11comparable. Maybe better in middle of band, ~550-650 MHz.
- Less structure to S11, which might be beneficial.

0.3

0.4

0.5

0.6

Frequency in MHz

0.7

0.8

0.9

Array Crosstalk Sims with CCA

- Working on new method of simulating crosstalk for full array with Leslie Greengard and staff at the Simons Foundation CCA/CCM.
- Idea is to compute scattering matrix for single array element: response to all possible input waveforms, modeled as planewaves from all directions on sky. Or, at least O(10,000) directions on sky.
- Scattering matrices can be summed "trivially" to get response of whole array.
- Computationally intensive, but we believe tractable.

Simulating Dish Deformations

- Working on procedure for simulating dish deformations in CST.
- Can import dish measurements from photogrammetry, etc. and create dish model including real deformations to assess beams and cosmology impact.
- Working to assess how many facets are necessary.
- Below: 5.6k vs 22.6k triangular equal area facets.

Simulating Dish Deformations

- 5k facets produces beams that differ from the perfect paraboloid by 0.05dB at highest frequencies, averaged across the beam.
- Increasing to 22k facets reduces error to 0.02dB average.
- We can then perturb the dish surface and examine the resulting beams.
- Below is a dish with the w-axis (distance up from vertex) perturbed with RMS 1.5cm. This is very large compared to realistic deformations.

Simulating Dish Deformations

• Effects of deformations can be easily seen in mean difference between beams (below), and in induced spatial structure of beams (following slides).

Faceted Dish vs Perfect Paraboloid

Faceted Dish vs Perfect Paraboloid

Deformed Dish vs Perfect Paraboloid

Cosmology Simulations

- Devin Crichton (UKZN) developing cosmo sim pipeline for HIRAX
- Produces synthetic visibilities by mock observing simulated skies, uses mmode analysis of Shaw et al. (<u>https://arxiv.org/abs/1401.2095</u>)
- Exploring the influence of survey design and systematics on our power spectrum sensitivity, and working towards an understanding how this will affect our ability to remove foregrounds.
- Using importing CST beams from simulated dishes for end-to-end, instrument to cosmology modeling

Derived Specifications

- Using cosmology simulations observed with varying CST beams, we set specifications for the necessary accuracy of instrument parameters to achieve desired foreground removal and cosmo param accuracy.
- We find symmetry of telescope mechanical assembly very important, and repeatability across array.
- Specifications highly significant for setting necessary manufacturing accuracy, and assessing cost of construction and assembly
- E.g., will need to use small number of dish molds, to reduce variations in dishes.

Element	Specification	Notes
Axial symmetry of	$\pm 1 \text{ mm}$	
receiver support		
Receiver support	< 0.5 dB	
RF attenuation		
Deviation of power	$\pm 2 \text{ mm}$	
cabling from boresight		
Rigidity of	$\pm 0.5 \text{ mm}$	In x,y, and z dimensions
receiver support		
Positioning of receiver	$\pm 0.5 \text{ mm}$	In x,y, and z dimensions
relative to focal point		
Orientation of receiver	± 2.5 arcmin	polar angle
relative to boresight	± 1.5 arcmin	azimuthal angle
Dish diameter	$\pm 3 \text{ mm}$	Accuracy
	$\pm 1 \text{ mm}$	Precision
Dish shape accuracy	$\pm 3 \text{ mm}$	Deviation from ideal paraboloid
Dish electrical connectivity	< 5 mm	Maximum dimension of gaps
Dish surface conductivity	$> 1 \times 10^6 \text{ S/m}$	

Summary

- Feed columns may be slightly better for beams, feed legs necessary for large feeds.
- Symmetry is very important!
- Very deep dishes seem to do well at suppressing array crosstalk, at reasonable cost in aperture efficiency.
- We can now simulate realistic deformed dish surfaces, and propagate all beam effects forward to cosmology!