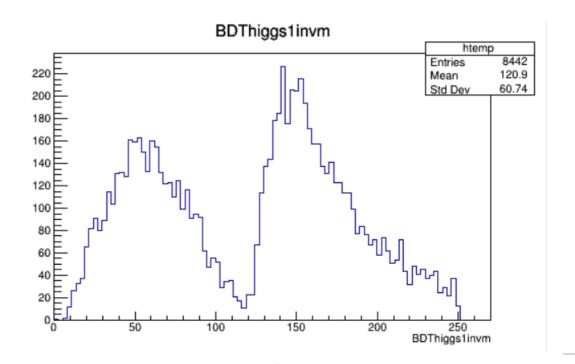
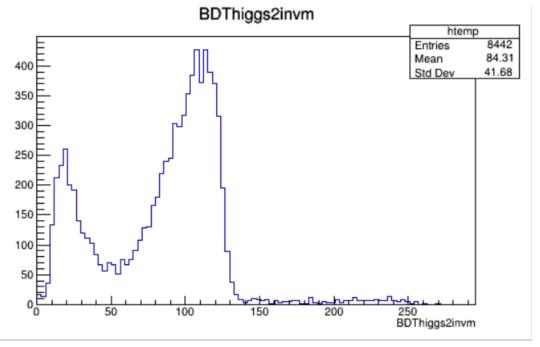


Feasibility Study of Measuring the Higgs Selfcoupling Using the Muon Collider





Reconstruction of one had one lep decaying di-au

- Then for reconstructing the $b\overline{b}$ jets pair, we require:
 - Σ BTag =2 for the $b\bar{b}$ jets pair;
- For highly boosted Higgs to $\tau^+\tau^-$ pairs, we find one anti- k_t jet with cone size R=0.5 and an electron or muon, and requiring the following criteria:
 - charge product Q of the two leading di- τ jets = -1;
 - TauTag = 1 for the tau-tagged jet;
 - Tau-tagged jet is searched in the rest of the jet;
 - Requiring non-btag jet;

Add generator level neutrino in one lep on had mode code and see how the distribution of the di-tau pair change.

Where to access my code and result

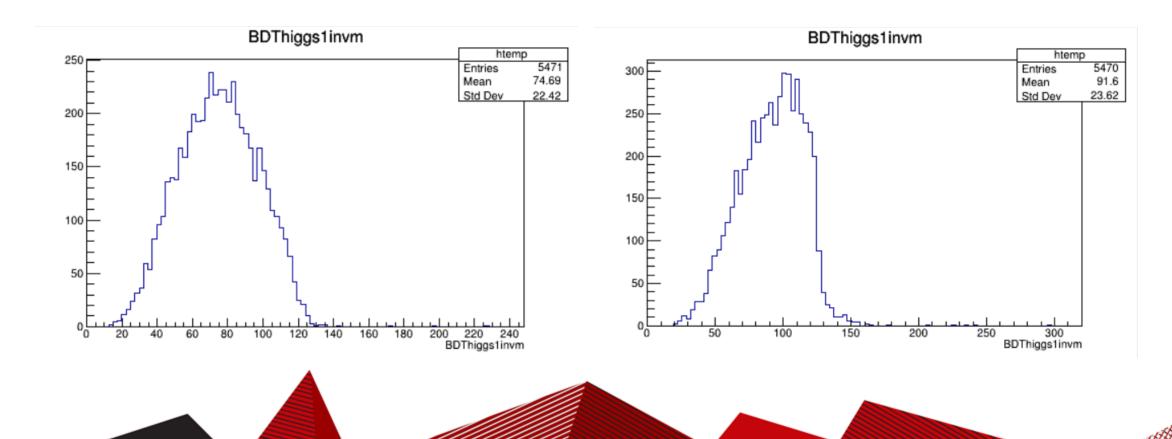
- Pairing algorithm for both hadronic decay:
 https://github.com/cvuosalo/MuonCollider/blob/main/Delphes/src/Pairing tau had.C
- Pairing algorithm for one had one lep decay: https://github.com/cvuosalo/MuonCollider/blob/main/Delphes/src/Pairing tau mix.C
- Script for event generation:
 - https://github.com/cvuosalo/MuonCollider/blob/main/runMGjobs/runMG_job/delphes_card_MuonColliderDet_HHstudy.tcl
 - Other sub-script are in: https://github.com/cvuosalo/MuonCollider/tree/main/runMGjobs/runMG_job/MuonCollider
- Result are accessible at:
 - root –l
 /afs/hep.wisc_edu/home/hjia38/Delphes/delphes_dhiggs_sig+bkg_pairmass_tau_had_10TeV.root

Reconstruction of hadronically decaying di-au

- For highly boosted Higgs to $\tau^+\tau^-$ pairs, we reconstruct two anti- k_t jet with cone size R=0.2, and requiring the following criteria:
 - charge product Q of the two leading di- τ jets = -1;
 - ΣTauTag = 2 for the tau-tagged jets pair;
 - In order to avoid selecting b jet fake tau, require Σ Btag = 0;
- Then for reconstructing the $b\bar{b}$ jets pair, we require:
 - Σ BTag =2 for the $b\bar{b}$ jets pair;
 - Require Σ TauTag =0, (Each b-tagged jets has $\Delta R > 0.5$ with each tau-tagged jet);

Should we use collinear mass for hadronic decay?

- Nice shift of mean value
- Very poor resolution
- Lost more than 50% events
- For more than half of the events MET are closer to BBbar


But we could try for the reconstruction on leptonic decay.

Reconstruction with Gen level neutrino

- Nice shift of mean value
- Almost no change of resolution
- 5471 compare of 5470 event got pass

Result of vvHH

Ideas on reconstruct hadronic di-tau

• We could see that the neutrinos from di-tau system are in the same direction. But collinear method fails because of the neutrinos from the W boson.