Automating one loop multi-leg calculations with Ds- dimensional unitarity Achilleas Lazopoulos ETH Zurich Loopfest VIII.Thursday, May 7th, 2009

Which nlo calculations and why ?

6-particle processes	ttjj	background to ttH		
	ttbb	background to ttH		
	VVbb	background to VBF		
	VVjj	background to VBF		
	bbbb	susy Higgs, hidden valley		
	Vjjj(j)	background to new physics		

A generic framework that can deal with all processes in a uniform manner will be useful

Is the virtual part the hardest?

- Not entirely obvious (qq2ttbb reports that real emission with dipoles is slower than virtual part for same relative precision)
- Catani-Seymour dipole approach automated
 - Gleisberg, Krauss arXiv:0709.2881 (not public)
 - Seymour, Tevlin arXiv:0803.2231 (only massless and within a MC framework)
 - Frederix, Gehrmann, Greiner arXiv:0808.2128 (within madgraph)
 - Hasegawa, Moch, Uwer arXiv:0807.3701 (in progress, MATHEMATICA + MadGraph)
 - Czakon, Papadopoulos, Worek: arxiv 0905.0883 (based on Phegas)

Would the traditional techniques suffice ?

- The number of diagrams explodes
- Specific optimization vs generalized automation

process	# of F. diagrams
qq2ttbb	188
gg2ttbb	1003
Wjjj	1583
bbbb	2090
gg2gggg	11850

OPP + unitarity

- BlackHat Bern, Dixon, Dunbar, Kosower:9403226,9409265,... (on-shell unitarity) Britto, Cachazo, Feng: 0412103 (cuts with complex momenta), Forde: 07041835 (CC part), on-shell recursion (Rational part), Ossola, Papadopoulos, Pittau: 0609007 (OPP reduction)
- Berger, Bern, Dixon, Febres Cordero, Forde, Ita, Kosower, Maitre: 0803.4180 (BlackHat), 0808.0941 (W +3jets, points), Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre: 0902.2760 (W +3jets)
- DsDU (Ds-Dimensional Unitarity) Ellis, Giele, Kunszt, Melnikov: 0801.2237(Ds-dimensional Rational part), 0806.3467 (massive fermions),.
- Rocket: Ellis, Melnikov, Zanderighi: 0901.4101 (W+3jets points), Ellis, Giele, Kunszt, Melnikov, Zanderighi: 0810.2762(W+3jets), Giele, Zanderighi: 0805.2152 (N gluons, points)
- 2. Winter, Giele: 0902.0094 (N gluons, points)
- 3. AL: 0812.2998 (N gluons and massless fermions)
- HELAC-IL (based on <u>HELAC</u> Kanaki, Papdopoulos: 0002082 and <u>OPP reduction</u>: Ossola, Papadopoulos, Pittau: 0609007, 0704.1271 (six photons), 0711.3596(CutTools), 0802.1876(Rational terms), Binoth, Ossola, Papadopoulos, Pittau 0804.0350 (VVV), Draggiotis, Garzelli, Papadopoulos, Pittau 0903.0356 (Feynman rules for R2)

I. van Hameren, Papadopoulos, Pittau: 0903.4665 (points for many processes) expanded vertices, colour Eidgenössische Technische Hochschu**treat**ment Swiss Federal Institute of Technology Zurich

<u>PARENT</u> is specified by 1) the external particles' ordering2) the flavour of internal (loop) propagators

APR depends on regularization scheme

$$\int [dl] \frac{N(l, \{p_i, h_i\})}{D_a D_b D_c \dots} \qquad A_{PR}^{D_s} = A_0 + D_s \cdot A_1$$

$$A^{6} = A_{0} + 6A_{1}$$

$$A^{8} = A_{0} + 8A_{1}$$

$$A^{D_{s}} = 4A^{6} - 3A^{8} + \frac{D_{s}}{2}(A^{8} - A^{6})$$

In FDH
$$D_s = 4 \rightarrow A^{FDH} = 2A^6 - A^8$$

$$\begin{split} A^{D_s} = \sum e_{\{i\}} I^{pent}_{\{i\}} + \sum d_{\{i\}} I^{box}_{\{i\}} + \sum c_{\{i\}} I^{tri}_{\{i\}} + \sum b_{\{i\}} I^{bub}_{\{i\}} + \sum a_{\{i\}} I^{tad}_{\{i\}} + RAT \\ \downarrow \\ & \downarrow \\ & \text{due to higher than} \\ & \text{4D loop momentum} \end{split}$$

OPP TO FIND THE COEFFICIENTS

$$A^{D_s} = \sum_i \int [dl] \frac{\bar{e}_Q(l)}{d_{i_1} d_{i_2} d_{i_3} d_{i_4} d_{i_5}} + \sum_i \int [dl] \frac{\bar{d}_Q(l)}{d_{i_1} d_{i_2} d_{i_3} d_{i_4}} + \sum_i \int [dl] \frac{\bar{c}_T(l)}{d_{i_1} d_{i_2} d_{i_3}} + \sum_i \int [dl] \frac{\bar{b}_B(l)}{d_{i_1} d_{i_2}} + \sum_i \int [dl] \frac{\bar{a}_S(l)}{d_{i_1} d_{i_2} d_{i_3}} + \sum_i \int [dl] \frac{\bar{b}_B(l)}{d_{i_1} d_{i_2} d_{i_3}} + \sum_i \int [dl] \frac{\bar{b}_B(l)}{d_{i_$$

Thanks to particular functional form of coefficients, e.g.

 $\bar{d} = d_0 + d_1 s_1 + d_2 s_e^2 + d_3 s_1 s_e^2 + d_4 s_e^4$

we can build NxN linear system of equations (choosing N different values for the loop momentum vector that solve the "unitarity constraints") and solve for

 d_0, d_1, d_2, d_3, d_4

OPP: RESIDUE CALLS PER CUT

5-cut	I (0+I)
4-cut	5 (2+3)
3-cut	10 (7+3)
2-cut	10 (9+1)

Minimal set (one can always implement redundancy)

"...that solve the unitarity constraints"

Rings evaluated

5-cut	I (0+I)	6, 8
4-cut	5 (2+3)	4x2, 6x3, 8x3
3-cut	10 (7+3)	4x7, 6x3, 8x3
2-cut	I0 (9+I)	4x9, 6x1, 8x1

Total: 4x18, 6x8, 8x8

Fermions in DsDU

Speed / efficiency 80% of cpu time spent on <u>ordered trees</u>!

tree	t(µs)	tree	t(µs)	tree	t(µs)	tree	t(µs)
4g	5.7	uugg	5	uudd	5	-	-
5g		uu3g	10	uuddg	9	-	-
6g	20	uu4g	17	uudd2g	15	uuddcc	13
7g	35	uu5g	29	uudd3g	25	uuddccg	22
8g	60	uu6g	46	uudd4g	40	uuddccgg	36

Speed / efficiency

cpu time for primitives

primitive	t(ms)	primitive	t(ms)	primitive	t(ms)	primitive	t(ms)
4g	3.1	uugg	3.6	uudd	3.5	-	-
5g	12	uu3g	15	uuddg	14	-	-
6g	39	uu4g	44	uudd2g	45	uuddcc	41
7g	107	uu5g	119	uudd3g	121	uuddccg	114
8 g	268	uu6g	310	uudd4g	291	uuddccgg	283

INTEL XEON X5450 @3.0GHz

EIGENISSISCHE TECHNISCHE HOCHSCHULE Zürich Swiss Federal Institute of Technology Zurich

Accuracy - stability

- agreement in E-poles (known from Kunszt, Signer, Trocsanyi
 9401294, Catani, Seymour 9605323) Only checks CC part.
- redundancy in OPP systems.
- exploit freedom in the solution of unitarity constraints.

Resort to Quadruple or Multiple precision

gluonic study

- Results similar with Rocket and J.Winter
- With reasonable cuts on gluons and not very unfortunate choices in loop momentum freedom, problematic points are of the order of 5%.
- Pentagon coefficient recombination helps.

Colour treatment

- Analytic summation over colour-ordered amplitudes (more flexible, leading colour, etc.)
- Monte Carlo over colour configurations and summation over connections (a la HELAC).

Next steps

- Quadruple (multiple) precision
- Massive fermions
- E/W Vector bosons
- Colour treatment

Outlook

- Approaching the times of automatic NLO matrix element generators.
- The colour treatment is still debatable.
- Real emission and interface to parton showers are still open issues.
- As in tree level matrix element generators, eventually generality, portability, user-friendliness will be more important than speed...
- ... as long as generic codes can deliver in reasonable times.

precision

When pole coefficients don't agree with analytic formula QP is switched on

D. H. Bailey, Y. Hida, K. Jeyabalan, X. S. Li and B. Thompson, "ARPREC

Eidgenössische Technische Hc (C++/Fortran-90 arbitrary precision package)" (http://crd.lbl.gov/~dhbailey/mpdist/)

Swiss Federal Institute of Technology Zurich

experimentalist's ghost

An experimenter's wishlist

Run II Monte Carlo Workshop

Single Boson	Diboson	Triboson	Heavy Flavou	ur
$W + \leq 5j$ $W + bb \leq 2i$	$\begin{array}{c} WW + \leq 5j \\ W + b\bar{b} + \leq 2j \end{array}$	$WWW + \leq 3j$ $WWW + b\bar{b} + \leq 3i$	$t\bar{t} + \leq 3j$	
$W + c\overline{c} \le 3j$ $W + c\overline{c} \le 3j$	$W + c\bar{c} + \leq 3j$ $W + c\bar{c} + \leq 3j$	$WWW + \gamma\gamma + \leq 3j$ $WWW + \gamma\gamma + \leq 3j$	$t\bar{t} + \bar{\gamma} + \leq 2j$ $t\bar{t} + W + \leq 2j$ $t\bar{t} + \bar{W} + \leq 2j$	$\frac{2j}{2}$
$Z + \leq 5j$ $Z + b\bar{b} + \leq 3j$	$ZZ + \leq 5j$ $Z + b\bar{b} + \leq 3j$	$Z\gamma\gamma + \leq 3j$ $ZZZ + \leq 3j$	$t\bar{t} + Z + \leq 2$ $t\bar{t} + H + \leq 2$	j
$Z + c\bar{c} + \le 3j$ $\gamma + \le 5j$	$ZZ + c\bar{c} + \leq 3j$ $\gamma\gamma + \leq 5j$	$ \begin{array}{c c} WZZ+\leq 3j\\ ZZZ+\leq 3j \end{array} $	$\begin{array}{l}tb \leq 2j\\ b\bar{b}+ \leq 3j\end{array}$	
$\begin{array}{l} \gamma + bb \leq 3j \\ \gamma + c\overline{c} \leq 3j \end{array}$	$\begin{array}{l} \gamma\gamma + bb \leq 3j \\ \gamma\gamma + c\bar{c} \leq 3j \end{array}$	WWj: Dittmaier, Kallweit, Uwer / arX	single top	ttj:Dittmaier, Uwer, Weinzier
W+3j: Ellis,Melnikov, Zanderighi arXiv:0901.4101	$WZ + \le 5j$ $WZ + b\bar{b} \le 3j$	ZZZ: AL, Melnikov, Petriello, hep-ph WWZ: Hankala Zappanfald arXiv:07	av:0710.1832 a/0703273	nep-pn/0703120
W+3j: BlackHat arXiv:0902.2760	$WZ + c\overline{c} \le 3j$ $W\gamma + \le 3j$	ttZ:AL, McElmurry, Melnikov, Petriello /ar	Xiv:0804.2220	
	$Z\gamma + \leq 3j$	VVV:Binoth , Ossola, Papadopoulos, Pittau	arXiv:0804.0350	

Eidgenössis Swiss Federa

The 'upgraded experimentalist's wish list for LHC'

The NLO multileg working group summary report (Les Houches 2007) 0803.0494

Calculations remaining from Les Houches 2005	
$4.1pp \rightarrow t\bar{t}b\bar{b}$ $5. p\bar{p} \rightarrow t\bar{t}+2jets$ $6. pp \rightarrow VV b\bar{b},$ $7. pp \rightarrow VV+2jets$ $8. pp \rightarrow V+3jets$	relevant for $t\bar{t}H$ relevant for $t\bar{t}H$ relevant for VBF $\rightarrow H \rightarrow VV, t\bar{t}H$ relevant for VBF $\rightarrow H \rightarrow VV$ VBF contributions calculated by (Bozzi/)Jäger/Oleari/Zeppenfeld [10–12] various new physics signatures
NLO calculations added to list in 2007	
9. $pp \rightarrow b\bar{b}b\bar{b}$	Higgs and new physics signatures
Bredenstein, Dener, Dittmaier, Pozzorini:0905.0110	V+3j: Ellis,Melnikov, Zanderighi arXiv:0901.4101 W+3j: BlackHat arXiv:0902.2760

Eidgenössische Technische Hochschule Züric Swiss Federal Institute of Technology Zurich

Pen-tuple cuts

$$\mathcal{X}^{D_s}_{\alpha\beta\gamma\delta\epsilon}(\hat{l}) = \bar{e}_{\alpha\beta\gamma\delta\epsilon}(\hat{l})$$

 $d_{\alpha} = l^2 \ d_{\beta} = (l + Q_1)^2 \ d_{\gamma} = (l + Q_1 + Q_2)^2 \ d_{\delta} = (l + Q_1 + Q_2 + Q_3)^2 \ d_{\epsilon} = (l + Q_1 + Q_2 + Q_3 + Q_4)^2$

$$\hat{l}^{\mu} = V^{\mu} + \sqrt{-V^2} n_5^{\mu} \qquad V^{\mu} = x_i v_i^{\mu} \qquad v_i \cdot Q_j = \delta_{ij}$$

Vermaseren - Van Neerven

 $\bar{e}(l) = e_0$

One
$$\hat{l}$$
 for pen-tuple cut

Scalar pentagon reduced to boxes

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Five l for quadruple cut, of which three in D=5

Triple and Double cuts

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The result for fixed Ds

$$A_{cc} = \sum_{Q} \tilde{d}_{Q,0} I_Q + \sum_{T} c_{T,0} I_T + \sum_{B} b_{B,0} I_B$$

$$A_R = -\sum_Q \frac{d_{Q,4}}{6} - \sum_T \frac{c_{T,9}}{2} - \sum_B \frac{b_{B,9}}{6}$$

Terms proportional to $s_e^2 = \sum_{i=4..D_s} (l \cdot n_i)^2$ do not vanish upon integration.

They can be rewritten in terms of integrals in D+2,D+4. They contribute to the rational part.

Necessary ingredient: the one-loop scalar integrals

Scalar Integrals: QCDLoop-1.4 Ellis, Zanderighi 0712.1851

The 6 gluon case

Swiss Federal Institute of Technology Zurich

CPU time share of tree-level building blocks