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Why NLO+Shower

• NLO results are cumbersome to use; they yield differential cross
sections that are not positive definite (that in fact have canceling
positive and negative infinities).

• Experimental results can be compared to NLO results only after
unfolding detector effects. With NLO+Showers one can feed the
output through detector simulation, and compare to raw data.

• Experimentalists have always asked for it
(and sometimes tried hard to do it themselves).

• It can be done: it should be done!
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Two methods developed at the level of producing usable implementations
for collider physics: MC@NLO and POWHEG.

Alternative proposals: Kramer, Mrenna, Soper (e+e−→ 3 partons),
MC@NLO variants based upon alternative shower algorithms:

• Shower by antenna factorization (Frederix,Giele,Kosower,Skands)
(toy implementation for H → gg )

• Shower by Catani-Seymour dipole factorization (Schumann)

• Shower with quantum interference (Nagy,Soper)

• Shower by Soft Collinear Effective Theory (Bauer,Schwartz)
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MC@NLO (2002, Frixione+Webber)

Add difference between exact NLO
and approximate (MC) NLO.

• Must use MC kinematics

• Difference should be regular
(if the MC is OK)

• Difference may be negative

Several collider processes already there:
Vector Bosons, Vector Bosons pairs,
Higgs, Single Top (also with W ),
Heavy Quarks, Higgs+W/Z.
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POWHEG

Positive Weight Hardest Emission Generator

Method to generate the hardest emission first, with NLO accuracy, and
independently of the SMC (P.N. 2004).

• SMC independent; no need of SMC expert; same calculation
can be interfaced to several SMC programs with no extra effort

• SMC inaccuracies in the soft region only affect next-to-hardest
emissions; no matching problems

• As the name says, it generates events with positive weight
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Status of POWHEG
Up to now, the following processes have been implemented in POWHEG:

• hh→ZZ (Ridolfi, P.N., 2006)

• e+e−→ hadrons, (Latunde-Dada,Gieseke,Webber, 2006),
e+e−→ tt̄ , including top decays at NLO (Latunde-Dada,2008),

• hh→ QQ̄ (Frixione, Ridolfi, P.N., 2007)

• hh→Z/W (Alioli, Oleari, Re, P.N., 2008; )
(Hamilton,Richardson,Tully, 2008;)

• hh→H (gluon fusion) (Alioli, Oleari, Re, P.N., 2008; Herwig++)

• hh→H , hh→HZ/W NEW (Hamilton,Richardson,Tully, 2009;)

• hh→ t + X (single top) NEW (Alioli, Oleari, Re, P.N., 2009)

• hh→Z + jet, Very preliminary (Alioli, Oleari, Re, P.N., 2009)

• The POWHEG BOX, Very preliminary, (Alioli, Oleari, Re, P.N., 2009)
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Formal comparison of POWHEG and MC@NLO

From now on:

• Assume that only one line radiates

• ΦB is the phase space of the Born level process

• Φ is the phase space of the real matrix elements

• Assume a factorization dΦ = dΦB dΦr, with dΦr is 3-dimensional

• B(ΦB) is the Born cross section

• R(ΦB, Φr) = R(Φ) is the real cross section
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MC@NLO and POWHEG implement the Hardest emission according to the formula

dσ = dΦBB̄(ΦB)
[

∆t0
+∆t

Rs(Φ)

B(ΦB)
dΦr

]

+ Rf dΦ, ∆t = exp
[

−
∫ Rs

B
dΦr θ(kT − t)

]

In standard SMC: B̄ = B, Rs = RM C = B
αs(t)

2π

Pi,jk(z)

t
, Rf =0, dΦr = dΦr

M C = dtdzdφ

In MC@NLO: B̄
M C(Φ

B
) = B(Φ

B
) +

[

V (ΦB)�
infi nite

+
∫

RM C(ΦB, Φr
M C) dΦr

M C�
infin ite

]�
fin ite

,

Rs = RM C , Rf = R −RM C , dΦr = dΦr
M C

MC@NLO generates ΦB distributed according to B̄
M C (the hardest radiation

is generated by the MC shower machinary) and Φ according to Rf .

In POWHEG: B̄(Φ
B
)= B(Φ

B
) +

[

V (ΦB)�
infi nite

+
∫

Rs(ΦB, Φr) dΦr�
infi nite

]�
fin ite

, Rs + Rf = R

Rf must be regular and positive. Normally: Rf =0, Rs = R.

Radiation is generated by POWHEG. Subsequent, less hard radiation is provided

by the SMC to which POWHEG is interfaced
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Accuracy: dσ = dΦB B̄(ΦB)
[

∆t0
+ ∆t

Rs(Φ)

B(ΦB)
dΦr

]

+ Rf dΦ

Small kT :
Rs(Φ)

B(ΦB)
dΦrad ≈ αs(t)

2π
Pi,jk(z)

dt

t
dz

dφ

2π
,

Also: B̄ ≈B × (1 +O(αs))

Thus: all features of SMC’s are preserved at small kT .

Large kT : ∆→ 1, dσ = B̄ × Rs

B
dΦ + Rf dΦ≈Rs × (1 +O(αs))dΦ + Rf dΦ,

so: large kt accuracy is preserved.

NLO accuracy: since ∆t0 +
∫

∆t
Rs(Φ)

B(ΦB)
dΦr = 1, integrating in dΦr at fixed ΦB

∫

δ(Φ
B
− Φ̄

B
)dσ =

[

B̄ +

∫

Rf dΦr

]

ΦB=Φ̄B

=

[

B + V +

∫

(Rs + Rf)dΦr

]

ΦB=Φ̄B

So: NLO accuracy is preserved for inclusive quantities.
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Although MC@NLO and POWHEG yield the exact NLO cross section,
differential distributions are affected by induced NNLO terms:

dσ = dΦBB̄
[

∆t0 + ∆t
Rs

B
dΦr

]

+ Rf dΦ, Rs + Rf = R, B̄ = B +
[

V +
∫

Rs dΦr

]

The expression for ∆t1,t = exp
[

−
∫ R

B
dΦr θ(kT − t)

]

generates

terms of all orders, and suppresses the distributions at small pT .

The square bracket term in B̄ , multiplied by Rs/B, generates NNLO terms
(in case of positive NLO corrections, it typically enhances the distributions.)
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POWHEG: Interfacing to SMC’s
POWHEG is completely detached from the SMC to which it is interfaced.
It uses the standard Les Houches Interface for User’s Processes (LHI):

The LHI provides a facility to pass the pT of the event to the SMC,
so that no radiation harder than pT will be generated by the MC.

For angular ordered showers (i.e. HERWIG), to preserve double log accuracy
one should provide truncated showers (P.N. 2004), now implemented
in HERWIG++.
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Examples: Z production

HERWIG alone fails at large pT ;
NLO alone fails at small pT ;
MC@NLO and POWHEG work
in both regions;

Notice:
HERWIG with ME corrections
or any ME program, give the
same NLO shape at large pT

However: Normalization around
small pT region is incorrect
(i.e. only LO).
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Comparisons of POWHEG+HERWIG vs. MC@NLO
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Z pair production
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Remarkable agreement for most quantities;
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POWHEG and MC@NLO comparison:
Top pair production

Good agreement for most observables considered
(differences can be ascribed to different treatment of higher order terms)
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Bottom pair production

• Very good agreement For large scales (ZZ, tt̄ production)

• Differences at small scales (bb̄ at the Tevatron)

• POWHEG more reliable in extreme cases like bb̄ , cc̄ at LHC

(yields positive results, MC@NLO has problems with negative weights)
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Z production: POWHEG+HERWIG vs. MC@NLO

Small differences in high and low pT region
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Z production: rapidity of hardest jet (TEVATRON)

POWHEG+HERWIG

MC@NLO

POWHEG+PYTHIA

PYTHIA

21



Dip in central region in MC@NLO also in tt̄ and ZZ

POWHEG+HERWIG

MC@NLO

POWHEG+HERWIG

MC@NLO
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ALPGEN and tt̄ + jet at NLO vs. MC@NLO

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

K = NLO/LO

yjet

43210−1−2−3−4

2.0

1.5

1.0

0.5

NLO

LO

√
s = 1.96TeV

pp̄ → tt̄ + jet + X

(

dσ
dyjet

)

[fb]

43210−1−2−3−4

1000

100

10

1

POWHEG distribution as in ALPGEN (Mangano,Moretti,Piccinini,Treccani,Nov.06)
and in tt̄ + jet at NLO (Dittmaier, Uwer, Weinzierl) : no dip present.

23



Higgs boson via gluon fusion at LHC

24



Jet rapidity in h production

Dip in MC@NLO inerithed from even deeper dip in HERWIG

(MC@NLO tries to fill dead regions in HERWIG, a mismatch remains).
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Gets worse for larger ET cuts:

Questions:

Why MC@NLO has a dip in the hardest jet rapidity?

Why POWHEG has no dip? Is that because of the hardest pT spectrum?
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Hard pT spectrum in POWHEG
POWHEG vs. NNLO vs. NNLL

dσ = B̄ dΦB

{

∆t0 + ∆t
R

B
dΦr

}

≈
B̄

B
R dΦB dΦr = {1 +O(αs)}�

≈2 for here !

R dΦ

Large enhancement because of the large K factor in Higgs production.
Better agreement with NNLO this way.

27



There is enough flexibility in POWHEG to get rid of it (if one wants)!!!

In the POWHEG cross section:

dσ ′ = dΦB B̄
s

[

∆t0

s +∆t
sRs

B
dΦr

]

+ Rf dΦ

with:

∆t
s = exp

[

−

∫

θ(tr − t)
Rs

B
dΦr

]

.

Rather than choosing Rf = 0, Rs = R, choose

Rf = R
kT

2

kT
2 + h2

, Rf = R
h2

kT
2 + h2

;
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Rs = R
h2

kT
2 + h2

Rf = R
kT

2

kT
2 + h2

Agrees with NLO
at high pT .
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No new features (dips and the like) arise in the other distributions:

So: high kT cross section and dips are unrelated issues.
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Why is there a dip in MC@NLO?

dσ = dΦBB̄
M C�

S event




∆t0

M C +∆t
M C RM C

B
dΦr

M C�
HERW IG shower




+

[

R −RM C�
H event

]

dΦ

B̄
M C = B +

[

V +

∫

RM C(ΦB, Φr) dΦr

]

For large kT :

dσ =
B̄

M C

B
RM C dΦBdΦr

M C + [R −RM C ]dΦ

= RdΦ�
no d ip

+

(

B̄HW

B
− 1

)�
O(αs), but large for H iggs

× RHW�
Pure Herw ig dip

dΦ

So: a contribution with a dip is added to the exact NLO result;

The contribution is O(αsR), i.e. NNLO!

Can we test this hypothesis? Replace B̄HW(Φn)⇒B(Φn) in MC@NLO!

the dip should disappear ...
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MC@NLO with BHWreplaced by B

No visible dip is present! (on the right track ...)
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Detailed study of the problem also by Hamilton,Richardson,Tully, 2009

1x1/s
_

max
1

y

- 1

shower a

shower b

Herwig++ dead zone

[ LHC mH=115 GeV ]

1x1/s
_

max
1

y

- 1

shower a

shower b

Herwig dead zone overlap

[ LHC mH=115 GeV ]

Both HERWIG and HERWIG++ have a dead radiation region corresponding
to central rapidity and high energy. Dip in central region in HERWIG can
be attributed to the dead zone.
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Summary of MC@NLO and POWHEG comparisons

• Fairly good agreement on most distributions

• Areas of disagreement can be tracked back to NNLO terms, arising
mostly because of the use of an NLO inclusive cross section
(the B̄ function) to shower out the hardest radiation.

• In POWEG, since the hardest radiation is generated by POWHEG itself,
one has high flexibility in tuning the magnitude of these NNLO terms.

• For MC@NLO, these NNLO terms can generate unphysical behaviour
in physical distributions, reflecting the dead zones structure
of the underlying shower Monte Carlo. Since MC@NLO uses the
underlying MC to generate the hardest emission, it is difficult to
remedy to these problems without intervening on the MC itself
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Flavour and singularities separation
The separation of the different singular regions is based upon the general
formulation of POWHEG given in Frixione, Oleari, P.N. 2007.

There are several allowed flavour assignments in the n body process.
B and V contributions are labelled by the flavour structure index fb.

There are several allowed flavour structures in the n + 1 body process.
Thus R is labelled by a flavour structure index fr.
Each component Rfr

has several singularity regions. We thus write

R =
∑

αr

Rαr

where each Rαr has a specific flavour structure, and is singular in only one
singular region. In FKS one writes

Rαr = Rfr
×Sαr

,
∑

αr

Sαr
= 1
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The S factors in the FKS formalism are defined as

Si =
1

Ndi
, Sij =

1

Ndij
h

(

Ei

Ei + Ej

)

,

where N is define so that
∑

αr
Sαr

= 1,

di =
(

s
√

Ei/2)a(1− cos2θi)
b, dij = (EiEj)

a(1− cos θij)
b,

lim
z→0

h(z) = 1, lim
z→1

h(z) = 0, h(z)+ h(1− z)= 1.

For example:

h(z)=
(1− z)c

zc + (1− z)c

So, the Si factors single out the region where parton i is collinear to either
initial state line, or is soft, while Sij single out the region where parton i

is collinear to parton j or is soft.
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The underlying Born
This is a basic concept in the POWHEG formalism;
To each region αr we associate an underlying Born flavour configuration fb,
obtained as follows:

• If the singular region is associated to a parton becoming soft, then
the parton must be a gluon, and it is simply removed to get the
underlying Born configuration

• If the region is associated to two parton becoming collinear, then,
in order for the region to be singular, the two partons must come
from the splitting of another parton. The two partons are removed,
and are replaced by the single parent parton with the appropriate
flavour

Notice that in a shower Monte Carlo one first generates the Born process
(i.e. the underlying Born configuration) and then lets one initial or final line
undergo collinear splitting. Here we look at each singular region of the real
matrix element, and ask from which underlyng Born process it could have
been produced via a shower.
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The underlying Born kinematics
To each kinematic configuration for the full radiation phase space Φ, one
associates an underlying Born kinematics ΦB and a set of radiation variables
Φr = (y, z, φ). For initial state radiation ΦB is obtained by going with a
longitudinal boost to the frame where the system recoiling against radiation
has zero longitudinal momentum. In this frame one boosts the recoil system
in the transverse direction, so that its transverse momentum becomes zero

The radiation variables are y = cos θ, θ being the angle between the radiated
parton and the positive rapidity incoming parton, ξ = 2E/ s

√
, where E

is the energy of the radiated parton, and φ is its azimuth.
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For final state radiation, the splitting partons are merged by summing their
3-momenta in the partonic CM frame. The 3-momentum is scaled, and the
recoil system is boosted so that momentum and energy are conserved.

The radiation variables are y = cos θ, θ being the angle between the radiated
partons, ξ = 2Ei/ s

√
, φ is the azimuth of the ij plane relative to kKi + kKj.

(This differs from FKS kinematics , where φ is relative to kKj).
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The B̄ function carries a flavour structure index, and is given by

B̄ fb(ΦB) = [B(ΦB)+ V (ΦB)]
fb

+
∑

αr∈{αr|fb}

∫

[dΦr R(Φ)]
αr

The Rαr
appearing here have singularities regulated by + prescriptions in the

FKS framework.
we have

• {αr |fb} is the set of all singular regions having the underlying Born
configuration with flavour structure fb.

• [� ]αr
means that everything inside is relative to the αr singular term:

thus R is Rαr
, the parametrization (ΦB , Φr) is the one appropriate to

the αr singular region
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Sudakov FF also carries an fb index:

∆fb(Φn, pT) = exp







−
∑

αr∈{αr|fb}

∫

[dΦr R(Φn, Φr)θ(kT − pT)]αr

Bfb(Φn)







or

∆fb(Φn, pT)=
∏

αr∈{αr|fb}

exp

{

−
∑

∫

[dΦr R(Φn, Φr)θ(kT − pT)]αr

Bfb(Φn)

}

The Sudakov form factor is a product of elementary Sudakov form factors
associated with each radiation region. Technically, one generates radiation
by generating a kT with each elementary form factor, and choosing the one
with the largest kT at the end.
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Single Top

Both initial state and final state radiation is present;

Born Initial state radiation final state radiation

Simplest process with ISR and FSR (simplest because finite without cuts)

We have applied the general formalism given in Frixione, Oleari, P.N. 2007
to single top production (Alioli, Oleari, Re, P.N. 2009).
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Towards automation: the POWHEG BOX

The MIB (Milano-Bicocca) group (Alioli, Oleari, Re, P.N.) is working on
an automatic implementation of POWHEG for generic NLO processes.

This framework is being tested in the process hh→Z + 1jet.
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The POWHEG BOX

Build a computer code framework, such that, given the Born cross section, the
finite part of the virtual corrections, and the real graph cross section, one
builds immediately a POWHEG generator. More precisely, the user must supply:

• The Born phase space

• The lists of Born and Real processes (i.e. u s̄→W+c c̄, etc.)

• The Born squared amplitudes B = |M|2, Bij , Bj,µj,µj
′, for all rele-

vant partonic processes; Bij is the colour ordered Born amplitude
squared, Bj,µν is the spin correlated amplitude, where j runs over all
external gluons in the amplitude. All these amplitudes are common
ingredient of an NLO calculation.

• The Real squared amplitude, for all relevant partonic processes.

• The finite part of the virtual amplitude contribution, for all relevant par-
tonic processes.
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Strategy
Use the FKS framework according to the general formulation of POWHEG given
in (Frixione, Oleari, P.N. 2007), hiding all FKS implementation details.
In other words, we use FKS, but the user needs not to understand it.
(Attempts to use the Catani-Seymour method did not work ...)
It includes:

• The phase space for ISR and FSR, according to FNO2006.

• The combinatorics, the calculation of all Rα, the soft and coll. limits

• The calculation of B̃

(spinoff: NLO implementation using the FKS method)

• The calculation of the upper bounds for the generation of radiation

• The generation of radiation

• Writing the event to the Les Houches interface

It works! Lots of more testing needed now ...
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Case study: Z + jet production

Got virtual matrix elements from MCFM;

Compare NLO predictions obtained with MCFM and the POWHEG BOX

Virtual corrections are the same, but subtraction terms, soft and collinear
remnants are all different; non trivial test;

54



55



56



57



58



Everything seems to work ...
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Now compare POWHEG+HERWIG with NLO (red)
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Distributions sensitive to more than
two jet show noticeably different.
All others in agreement with NLO
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Conclusions

• NLO accuracy with Shower MC has become a reality in recent years.

• The POWHEG method is progressing, with new processes being
included

• Progress in understanding agreement and differences
between MC@NLO and POWHEG

• A path to full automation of POWHEG implementations of arbitrary
NLO calculation is open

• Many interesting problems remain to be addressed, and the
NLO+Shower community is steadily growing.
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