

Electroweak Precision Physics

Jens Erler

Departamento de Física Teórica Instituto de Física Universidad Nacional Autónoma de México (IF-UNAM)

LoopFest VIII University of Wisconsin at Madison

May 7-9, 2009

 Introduction: probes of the SM and beyond

- Introduction: probes of the SM and beyond
- SM global fit: Higgs boson mass

- Introduction: probes of the SM and beyond
- SM global fit: Higgs boson mass
- Physics beyond the SM:
 Z' bosons and 4th fermion generation

- Introduction: probes of the SM and beyond
- SM global fit: Higgs boson mass
- Physics beyond the SM:
 Z' bosons and 4th fermion generation
- Conclusions

Introduction probes of the SM and beyond

Low energy probes

- V: scattering, oscillations, magnetic moments
- e: polarization asymmetries, g-2, EDM
- µ: lifetime, decay parameters, g-2, LFV, EDM
- T: lifetime, BRs, spectral functions, LFV
- atoms, ions, molecules, solids: PNC, EDMs
- muonic atoms, muonium: LFV

Hadronic and nuclear probes

- Mesons: weak decays, mixings
- cc, bb: resonance parameters, production X-section
- p: lifetime, EDM
- n: lifetime, decay parameters, EDM, n-n oscillation
- ²H: EDM
- ³H: ordinary β-decay
- nuclei (10 < A< 74): superallowed $0^+ \rightarrow 0^+ \beta$ -decays
- heavy nuclei: $\chi\beta\beta$ -decay

High energy probes

- t: pair decays, single (EW) production X-section
- W: mass, width, BRs, anomalous gauge couplings
- Z: lineshape parameters, BRs, asymmetries
- H: collider searches

SM global fit Higgs boson mass

• μ -lifetime $\Rightarrow (\sqrt{2} G_F)^{-1/2} = 246.2209 (5) GeV$

- μ -lifetime $\Rightarrow (\sqrt{2} G_F)^{-1/2} = 246.2209 (5) GeV$
- electron $g-2 \Rightarrow \alpha^{-1} = 137.035 999 679 (94)$

- μ -lifetime $\Rightarrow (\sqrt{2} G_F)^{-1/2} = 246.2209 (5) GeV$
- electron $g-2 \Rightarrow \alpha^{-1} = 137.035 999 679 (94)$
- Z lineshape $\Rightarrow M_Z = 91.1876$ (21) GeV

- μ -lifetime $\Rightarrow (\sqrt{2} G_F)^{-1/2} = 246.2209 (5) GeV$
- electron $g-2 \Rightarrow \alpha^{-1} = 137.035 999 679 (94)$
- Z lineshape $\Rightarrow M_Z = 91.1876 (21) \text{ GeV}$
- $\Rightarrow \overline{\rho} \sin^2 \overline{\theta}_{W} \cos^2 \overline{\theta}_{W} (1 \Delta \hat{r}) = 0.167 \ 145 \ (8) = \sin^2 \theta_{W} \cos^2 \theta_{W} (1 \Delta r), \text{ with } \cos \theta_{W} = M_{W} / M_{Z}$

- μ -lifetime $\Rightarrow (\sqrt{2} G_F)^{-1/2} = 246.2209 (5) GeV$
- electron $g-2 \Rightarrow \alpha^{-1} = 137.035 999 679 (94)$
- Z lineshape \Rightarrow M_Z = 91.1876 (21) GeV
- $\Rightarrow \overline{\rho} \sin^2 \overline{\theta}_{W} \cos^2 \overline{\theta}_{W} (1 \Delta \hat{r}) = 0.167 \ 145 \ (8) = \sin^2 \theta_{W} \cos^2 \theta_{W} (1 \Delta r), \text{ with } \cos \theta_{W} = M_{W}/M_{Z}$
- two equations, one unknown: M_H (in $\overline{\rho}$, $\Delta r \& \Delta \overline{r}$)

- μ -lifetime $\Rightarrow (\sqrt{2} G_F)^{-1/2} = 246.2209 (5) GeV$
- electron $g-2 \Rightarrow \alpha^{-1} = 137.035 999 679 (94)$
- Z lineshape \Rightarrow M_Z = 91.1876 (21) GeV
- $\Rightarrow \overline{\rho} \sin^2 \overline{\theta}_{W} \cos^2 \overline{\theta}_{W} (1 \Delta \hat{r}) = 0.167 \ 145 \ (8) = \sin^2 \theta_{W} \cos^2 \theta_{W} (1 \Delta r), \text{ with } \cos \theta_{W} = M_{W}/M_{Z}$
- two equations, one unknown: M_H (in $\overline{\rho}$, $\Delta r \& \Delta \overline{r}$)
- there is independent M_H -dependence in Γ_Z & the low energy neutral current (ρ) and the Zbb-vertex

	global fit	dominated by
m _t [GeV]	173.1 ± 1.4	CDF & D0

	global fit	dominated by
m _t [GeV]	173.1 ± 1.4	CDF & D0
Mw [GeV]	80.380 (15)	LEP 2, CDF & D0

	global fit	dominated by
m _t [GeV]	173.1 ± 1.4	CDF & D0
Mw [GeV]	80.380 (15)	LEP 2, CDF & D0
Mz [GeV]	91.1874 (21)	LEP I

	global fit	dominated by
m _t [GeV]	173.1 ± 1.4	CDF & D0
Mw [GeV]	80.380 (15)	LEP 2, CDF & D0
Mz [GeV]	91.1874 (21)	LEP I
$sin^2\overline{\theta}_W(M_Z)$	0.23119 (13)	A _{FB} (b) & A _{LR}

	global fit	dominated by
m _t [GeV]	173.1 ± 1.4	CDF & D0
Mw [GeV]	80.380 (15)	LEP 2, CDF & D0
M _Z [GeV]	91.1874 (21)	LEP I
$sin^2\overline{\theta}_W(M_Z)$	0.23119 (13)	A _{FB} (b) & A _{LR}
<mark>М</mark> н [GeV]	96 ⁺²⁹ -25	sin²θ _W (M _Z) & M _W

	global fit	dominated by
m _t [GeV]	173.1 ± 1.4	CDF & D0
Mw [GeV]	80.380 (15)	LEP 2, CDF & D0
Mz [GeV]	91.1874 (21)	LEP I
$sin^2\overline{\theta}_W(M_Z)$	0.23119 (13)	A _{FB} (b) & A _{LR}
<mark>М</mark> н [GeV]	96 ⁺²⁹ -25	$sin^2\overline{\Theta}_W(M_Z) \& M_W$
α_{s} (M _Z)	0.1185 (16)	Z-lineshape & T-decays

	global fit	dominated by
m _t [GeV]	173.1 ± 1.4	CDF & D0
Mw [GeV]	80.380 (15)	LEP 2, CDF & D0
Mz [GeV]	91.1874 (21)	LEP I
$sin^2\overline{\theta}_W(M_Z)$	0.23119 (13)	A _{FB} (b) & A _{LR}
<mark>М</mark> н [GeV]	96 ⁺²⁹ -25	sin²θ _W (M _Z) & M _W
α_{s} (M _Z)	0.1185 (16)	Z-lineshape & T-decays
$\chi^2/d.o.f.$	48.0/45 (35%)	muon g-2

LEP 2 Higgs searches

Tevatron Higgs searches

14

Physics beyond the SM Z' bosons and 4th fermion generation
• consider only effects of Z' (not exotic fermions)

- consider only effects of Z' (not exotic fermions)
- in this case Z' decouples (unlike 4th family)

- consider only effects of Z' (not exotic fermions)
- in this case Z' decouples (unlike 4th family)
- $\tan^2 \theta = [M_0^2 M_z^2] / [M_{z'}^2 M_0^2],$ with $\cos \theta_W = M_W / M_0$ (Langacker 1984)

- consider only effects of Z' (not exotic fermions)
- in this case Z' decouples (unlike 4th family)
- $\tan^2 \theta = [M_0^2 M_z^2] / [M_{z'}^2 M_0^2],$ with $\cos \theta_W = M_W / M_0$ (Langacker 1984)
- can allow $T \neq 0$ (Higgs triplets, exotics in loops)

- consider only effects of Z' (not exotic fermions)
- in this case Z' decouples (unlike 4th family)
- $\tan^2 \theta = [M_0^2 M_z^2] / [M_{z'}^2 M_0^2],$ with $\cos \theta_W = M_W / M_0$ (Langacker 1984)
- can allow $T \neq 0$ (Higgs triplets, exotics in loops)
- $\theta = C g_2/g_1 M_z^2/M_{z'}^2$, with C a function of the U(1)' charges and VEVs of the Higgs sector

- consider only effects of Z' (not exotic fermions)
- in this case Z' decouples (unlike 4th family)
- $\tan^2 \theta = [M_0^2 M_z^2] / [M_{z'}^2 M_0^2],$ with $\cos \theta_W = M_W / M_0$ (Langacker 1984)
- can allow $T \neq 0$ (Higgs triplets, exotics in loops)
- $\theta = C g_2/g_1 M_z^2/M_{z'}^2$, with C a function of the U(1)' charges and VEVs of the Higgs sector
- $sin\theta = 0 \Rightarrow$ high energy data virtually blind to Z'

- consider only effects of Z' (not exotic fermions)
- in this case Z' decouples (unlike 4th family)
- $\tan^2 \theta = [M_0^2 M_z^2] / [M_{z'}^2 M_0^2],$ with $\cos \theta_W = M_W / M_0$ (Langacker 1984)
- can allow $T \neq 0$ (Higgs triplets, exotics in loops)
- $\theta = C g_2/g_1 M_z^2/M_{z'}^2$, with C a function of the U(1)' charges and VEVs of the Higgs sector
- $\sin\theta = 0 \Rightarrow$ high energy data virtually blind to Z'
- conversely: high energy data $\Rightarrow \sin\theta \leq \mathcal{O}(10^{-3})$

• Nuclear spin independent PV sensitive to q-vector e^-axial -vector couplings ($C_{1i}, Q_W \propto A^3$)

- Nuclear spin independent PV sensitive to q-vector e^-axial -vector couplings ($C_{1i}, Q_W \propto A^3$)
- most precise measurement: Q_W(¹³³Cs) (Boulder)

- Nuclear spin independent PV sensitive to q-vector e^-axial -vector couplings ($C_{1i}, Q_W \propto A^3$)
- most precise measurement: Q_W(¹³³Cs) (Boulder)
- also needs precise atomic structure calculation ⇒
 Q_W(¹³³Cs) = -73.17 ± 0.29 (exp.) ± 0.20 (theory) (Derevianko 2008)

- Nuclear spin independent PV sensitive to q-vector e^-axial -vector couplings ($C_{1i}, Q_W \propto A^3$)
- most precise measurement: Q_W(¹³³Cs) (Boulder)
- also needs precise atomic structure calculation ⇒
 Q_W(¹³³Cs) = -73.17 ± 0.29 (exp.) ± 0.20 (theory) (Derevianko 2008)
- $SM: Q_W(Cs) = 188 Q_W(u) + 211 Q_W(d) = -73.15$

- Nuclear spin independent PV sensitive to q-vector
 e⁻-axial-vector couplings (C_{1i}, Q_W ~ A³)
- most precise measurement: Q_W(¹³³Cs) (Boulder)
- also needs precise atomic structure calculation ⇒
 Q_W(¹³³Cs) = -73.17 ± 0.29 (exp.) ± 0.20 (theory) (Derevianko 2008)
- $SM: Q_W(Cs) = 188 Q_W(u) + 211 Q_W(d) = -73.15$
- $\Delta Q_W(q) \propto (e_L e_R) (q_L + q_R) M_Z^2 / M_{Z'}^2 (sin\theta = 0)$

- Nuclear spin independent PV sensitive to q-vector
 e⁻-axial-vector couplings (C_{1i}, Q_W ~ A³)
- most precise measurement: Q_W(¹³³Cs) (Boulder)
- also needs precise atomic structure calculation ⇒
 Q_W(¹³³Cs) = -73.17 ± 0.29 (exp.) ± 0.20 (theory) (Derevianko 2008)
- $SM: Q_W(Cs) = 188 Q_W(u) + 211 Q_W(d) = -73.15$
- $\Delta Q_W(q) \propto (e_L e_R) (q_L + q_R) M_Z^2 / M_{Z'}^2 (\sin\theta = 0)$
- $\Rightarrow M_X \ge 0.89 \text{ TeV} (95\% \text{ CL}) (Z_{\psi}: q_L + q_R = 0)$

PDG 2008

• Degenerate case (T = U = 0, S = $2/3\pi = 0.2122$): solidly excluded at 5.5 σ (N_F = 2.86 ± 0.21)

- Degenerate case (T = U = 0, S = $2/3\pi = 0.2122$): solidly excluded at 5.5 σ (N_F = 2.86 ± 0.21)
- Complementary to $N_F = 2.991 \pm 0.007$ from Γ_Z

- Degenerate case (T = U = 0, S = $2/3\pi = 0.2122$): solidly excluded at 5.5 σ (N_F = 2.86 ± 0.21)
- Complementary to $N_F = 2.991 \pm 0.007$ from Γ_Z
- T parameter free: T = 0.21 ± 0.04 (M_H = 117 GeV) but $\Delta \chi^2$ = 5.2 relative to SM (excluded at 98% CL)

- Degenerate case (T = U = 0, S = $2/3\pi = 0.2122$): solidly excluded at 5.5 σ (N_F = 2.86 ± 0.21)
- Complementary to $N_F = 2.991 \pm 0.007$ from Γ_Z
- T parameter free: T = 0.21 \pm 0.04 (M_H = 117 GeV) but $\Delta \chi^2$ = 5.2 relative to SM (excluded at 98% CL)
- Designer splittings (Δm ≈ 50 GeV) of doublets: (He, Polonsky, Su 2001; Bulanov et al. 2003; Novikov, Rozanov, Vysotsky 2009) (m_t', m_V') = (400, 100) GeV ⇒ S = 0.15, T = 0.19 (Kribs et al. 2007): Δχ² = 2.8 (marginal at 90% CL)

• superallowed $0^+ \rightarrow 0^+ \beta$ -decays (Hardy, Towner): $|V_{ud}| = 0.97424$ (8) (10) (18) = 0.97424 ± 0.00022

- superallowed $0^+ \rightarrow 0^+ \beta$ -decays (Hardy, Towner): $|V_{ud}| = 0.97424$ (8) (10) (18) = 0.97424 ± 0.00022
- K_{I3} decays: $|V_{us}| = 0.22478 \pm 0.00124$ (KLOE)

- superallowed $0^+ \rightarrow 0^+ \beta$ -decays (Hardy, Towner): $|V_{ud}| = 0.97424$ (8) (10) (18) = 0.97424 ± 0.00022
- K_{I3} decays: $|V_{us}| = 0.22478 \pm 0.00124$ (KLOE)
- K_{12} decays: $|V_{us}/V_{ud}| = 0.23216 \pm 0.00145$ (KLOE)

- superallowed $0^+ \rightarrow 0^+ \beta$ -decays (Hardy, Towner): $|V_{ud}| = 0.97424$ (8) (10) (18) = 0.97424 ± 0.00022
- K_{I3} decays: $|V_{us}| = 0.22478 \pm 0.00124$ (KLOE)
- K_{12} decays: $|V_{us}/V_{ud}| = 0.23216 \pm 0.00145$ (KLOE)
- $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 1 = 0.0000 \pm 0.0006$ $\propto e_L (e_L - q_L) \ln(M_{Z'}/M_W)/(M_{Z'}^2/M_W^2 - 1)$ from 1-loop W-Z' box (Marciano, Sirlin 1987)

- superallowed $0^+ \rightarrow 0^+ \beta$ -decays (Hardy, Towner): $|V_{ud}| = 0.97424$ (8) (10) (18) = 0.97424 ± 0.00022
- K_{I3} decays: $|V_{us}| = 0.22478 \pm 0.00124$ (KLOE)
- K_{12} decays: $|V_{us}/V_{ud}| = 0.23216 \pm 0.00145$ (KLOE)
- $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 1 = 0.0000 \pm 0.0006$ $\propto e_L (e_L - q_L) \ln(M_{Z'}/M_W)/(M_{Z'}^2/M_W^2 - 1)$ from 1-loop W-Z' box (Marciano, Sirlin 1987)
- $\Rightarrow M_{\chi} \ge 265 \text{ GeV}$ at 95% CL ($\Delta \chi^2 \le 3.84$) (no constraint on Z_{ψ} , since $e_L = q_L$)

• SLAC E-158: E = 45 & 48 GeV, P \simeq 89 ± 4 % \Rightarrow Q² \simeq m E \simeq 0.026 GeV² (high energy, low Q²)

- SLAC E-158: E = 45 & 48 GeV, P \simeq 89 ± 4 % \Rightarrow Q² \simeq m E \simeq 0.026 GeV² (high energy, low Q²)
- $A_{RL} = -(1.31 \pm 0.14 \pm 0.10) \times 10^{-7} \propto Q_W(e)$ $\Rightarrow Q_W(e) = -0.0403 \pm 0.0053$

- SLAC E-158: E = 45 & 48 GeV, P \simeq 89 ± 4 % \Rightarrow Q² \simeq m E \simeq 0.026 GeV² (high energy, low Q²)
- $A_{RL} = -(1.31 \pm 0.14 \pm 0.10) \times 10^{-7} \propto Q_W(e)$ $\Rightarrow Q_W(e) = -0.0403 \pm 0.0053$
- SM: $Q_W(e) = \rho (-1 + 4 \kappa \sin^2 \theta_W[\sqrt{Q^2}]) = -0.0472$

- SLAC E-158: E = 45 & 48 GeV, P \simeq 89 ± 4 % \Rightarrow Q² \simeq m E \simeq 0.026 GeV² (high energy, low Q²)
- $A_{RL} = -(1.31 \pm 0.14 \pm 0.10) \times 10^{-7} \propto Q_W(e)$ $\Rightarrow Q_W(e) = -0.0403 \pm 0.0053$
- SM: $Q_W(e) = \rho (-1 + 4 \kappa \sin^2 \theta_W[\sqrt{Q^2}]) = -0.0472$
- $\Delta Q_W(e) \propto (e_L e_R) (e_L + e_R) M_Z^2 / M_{Z'}^2 (sin\theta=0)$ (manifestly complementary to Tevatron and LEP 2)

- SLAC E-158: E = 45 & 48 GeV, P \simeq 89 ± 4 % \Rightarrow Q² \simeq m E \simeq 0.026 GeV² (high energy, low Q²)
- $A_{RL} = -(1.31 \pm 0.14 \pm 0.10) \times 10^{-7} \propto Q_W(e)$ $\Rightarrow Q_W(e) = -0.0403 \pm 0.0053$
- SM: $Q_W(e) = \rho (-1 + 4 \kappa \sin^2 \theta_W[\sqrt{Q^2}]) = -0.0472$
- $\Delta Q_W(e) \propto (e_L e_R) (e_L + e_R) M_Z^2 / M_{Z'}^2 (sin\theta=0)$ (manifestly complementary to Tevatron and LEP 2)
- $\Rightarrow M_X \ge 0.67 \text{ TeV} (95\% \text{ CL}) (Z_{\psi}: e_L + e_R = 0)$

Polarized e scattering: future

Polarized e scattering: future

• Qweak @ 6 GeV CEBAF: $\Delta Q_W(p) = \pm 0.0029 \Rightarrow$

 $M_X \ge 0.67 \text{ TeV}$ (expected 95% CL limit)

Polarized e⁻ scattering: future

- Qweak @ 6 GeV CEBAF: $\Delta Q_W(p) = \pm 0.0029 \Rightarrow$ M_X ≥ 0.67 TeV (expected 95% CL limit)
- PV-DIS @ 6 and I2 GeV CEBAF:

 $(2 C_{1u} - C_{1d}) + 0.84 (2 C_{2u} - C_{2d}) = \pm 0.0049 \Rightarrow$

 $M_X \ge 0.45 \text{ TeV} (Z_{\psi}: q_L + q_R = e_L + e_R = 0) \text{ or}$

PDFs: higher twist (CSV) go with Q^2 (x)
Polarized e⁻ scattering: future

- Qweak @ 6 GeV CEBAF: $\Delta Q_W(p) = \pm 0.0029 \Rightarrow$ M_X ≥ 0.67 TeV (expected 95% CL limit)
- PV-DIS @ 6 and I2 GeV CEBAF:

 $(2 C_{1u} - C_{1d}) + 0.84 (2 C_{2u} - C_{2d}) = \pm 0.0049 \Rightarrow$

 $M_X \ge 0.45 \text{ TeV} (Z_{\psi}: q_L + q_R = e_L + e_R = 0) \text{ or}$

PDFs: higher twist (CSV) go with $Q^2(x)$

• e2ePV @ 12 GeV CEBAF: $\Delta Q_W(e) = \pm 0.0011 \Rightarrow$ $M_X \ge 1.07 \text{ TeV or } \Delta \sin^2 \theta_W = \pm 0.00029$

Parametrizing the running of α

Parametrizing the running of α

- Use perturbative QCD as much as possible:
 - c and b quarks: 4-loop RGE + 3-loop matching
 - light quarks (E > 1.8 GeV): 4-loop analytic results

Parametrizing the running of α

- Use perturbative QCD as much as possible:
 - c and b quarks: 4-loop RGE + 3-loop matching
 - light quarks (E > 1.8 GeV): 4-loop analytic results
- absorb higher order QCD corrections into effective "threshold masses", mq
 - m_c and m_{b:} from QCD sum rules (S resonances)
 - $\overline{m_u}$ and $\overline{m_d}$ (E < 1.8 GeV): use dispersive result and approximate isospin symmetry, $\overline{m_u} = \overline{m_d}$
 - $\overline{m_s}$: difficult to determine independently of $\overline{m_d}$

- Define $\overline{m}_q = \frac{1}{2} \xi_q M_{1S}$ and consider 2 limits:
 - s quark behaves like a heavy quark ($\xi \sim I$): $\overline{m_s} = M_{\Phi}/M_{J/\Psi} \overline{m_c} = 387 \text{ MeV} (\xi_s = \xi_c \approx 0.76)$
 - s quark behaves like a light quark ($\xi \ll I$): $\overline{m}_s = M_{\Phi}/M_{\omega} \overline{m}_u = 240 \text{ MeV} (\xi_s \approx 0.47 \text{ to reproduce DR constraint})$

- Define $\overline{m}_q = \frac{1}{2} \xi_q M_{1S}$ and consider 2 limits:
 - s quark behaves like a heavy quark ($\xi \sim I$): $\overline{m}_s = M_{\Phi}/M_{J/\Psi} \overline{m}_c = 387 \text{ MeV} (\xi_s = \xi_c \approx 0.76)$
 - s quark behaves like a light quark ($\xi \ll I$): $\overline{m}_s = M_{\Phi}/M_{\omega} \overline{m}_u = 240 \text{ MeV} (\xi_s \approx 0.47 \text{ to reproduce DR constraint})$
- singlet (QCD annihilation) diagrams negligible

- Define $\overline{m}_q = \frac{1}{2} \xi_q M_{1S}$ and consider 2 limits:
 - s quark behaves like a heavy quark ($\xi \sim I$): $\overline{m_s} = M_{\Phi}/M_{J/\Psi} \overline{m_c} = 387 \text{ MeV} (\xi_s = \xi_c \approx 0.76)$
 - s quark behaves like a light quark ($\xi \ll I$): $\overline{m}_s = M_{\Phi}/M_{\omega} \overline{m}_u = 240 \text{ MeV} (\xi_s \approx 0.47 \text{ to reproduce DR constraint})$
- singlet (QCD annihilation) diagrams negligible
- \Rightarrow irreducible theoretical uncertainty $\leq \pm 7 \times 10^{-5}$

- Define $\overline{m}_q = \frac{1}{2} \xi_q M_{1S}$ and consider 2 limits:
 - s quark behaves like a heavy quark ($\xi \sim I$): $\overline{m_s} = M_{\Phi}/M_{J/\Psi} \overline{m_c} = 387 \text{ MeV} (\xi_s = \xi_c \approx 0.76)$
 - s quark behaves like a light quark ($\xi \ll I$): $\overline{m}_s = M_{\Phi}/M_{\omega} \overline{m}_u = 240 \text{ MeV} (\xi_s \approx 0.47 \text{ to reproduce DR constraint})$
- singlet (QCD annihilation) diagrams negligible
- \Rightarrow irreducible theoretical uncertainty $\leq \pm 7 \times 10^{-5}$
- $\alpha_s, \overline{m}_c, \overline{m}_b, sin^2 \theta_W \Rightarrow parametric uncertainties$

95% CL lower	precision	
limits [GeV]	data	LEF Z

95% CL lower limits [GeV]	precision data	CDF	LEP 2
Z _X	1.140	892	781 (OPAL)

95% CL lower limits [GeV]	precision data	CDF	LEP 2
Z _X	1.140	892	781 (OPAL)
Zψ	147	878	481 (2f-WG)

95% CL lower limits [GeV]	precision data	CDF	LEP 2
Z _X	1.140	892	781 (OPAL)
Zψ	147	878	481 (2f-WG)
Zη	419	904	515 (OPAL)

95% CL lower limits [GeV]	precision data	CDF	LEP 2
Z _X	1.140	892	781 (OPAL)
Zψ	147	878	481 (2f-WG)
Zη	419	904	515 (OPAL)
Z _{LR}	976	630	804 (2f-WG)

95% CL lower limits [GeV]	precision data	CDF	LEP 2
Z _X	1.140	892	781 (OPAL)
Zψ	147	878	481 (2f-WG)
Zη	419	904	515 (OPAL)
Z _{LR}	976	630	804 (2f-WG)
sequential Z'	I.387	1.030	I,787 (2f-WG)

95% CL lower limits [GeV]	precision data	CDF	LEP 2
Z _X	1.140	892	781 (OPAL)
Zψ	147	878	481 (2f-WG)
Zη	419	904	515 (OPAL)
Z _{LR}	976	630	804 (2f-WG)
sequential Z'	I.387	1.030	I,787 (2f-WG)

• precision data assume T = 0 (ρ = I)

95% CL lower limits [GeV]	precision data	CDF	LEP 2
Z _X	1.140	892	781 (OPAL)
Zψ	147	878	481 (2f-WG)
Zη	419	904	515 (OPAL)
Z _{LR}	976	630	804 (2f-WG)
sequential Z'	I.387	1.030	I,787 (2f-WG)

- precision data assume T = 0 ($\rho = I$)
- CDF assumes no exotic or SUSY decay channels

95% CL lower limits [GeV]	precision data	CDF	LEP 2
Z _X	1.140	892	781 (OPAL)
Zψ	147	878	481 (2f-WG)
Zη	419	904	515 (OPAL)
Z _{LR}	976	630	804 (2f-WG)
sequential Z'	I.387	1.030	I,787 (2f-WG)

- precision data assume T = 0 ($\rho = I$)
- CDF assumes no exotic or SUSY decay channels
- LEP 2 assumes $\sin\theta = 0$

 M_{Z} [TeV]

 $0.46 \text{ TeV} < M_{Z'} < 29 \text{ TeV}$ (90% CL)

 Electroweak precision physics growing field with bright future (polarized e⁻ scattering, precision flavor physics)

- Electroweak precision physics growing field with bright future (polarized e⁻ scattering, precision flavor physics)
- Higgs searches + EW precision data restricts Higgs mass to 34 GeV window (in SM)

- Electroweak precision physics growing field with bright future (polarized e⁻ scattering, precision flavor physics)
- Higgs searches + EW precision data restricts Higgs mass to 34 GeV window (in SM)
- Z' constraints from EW precision data competitive with LEP 2 and Tevatron

- Electroweak precision physics growing field with bright future (polarized e⁻ scattering, precision flavor physics)
- Higgs searches + EW precision data restricts Higgs mass to 34 GeV window (in SM)
- Z' constraints from EW precision data competitive with LEP 2 and Tevatron
- 2σ problems in CKM 1st row unitarity & APV disappeared entirely (4th family constraints somewhat weaker)

Backup slides

- Poor perturbative series between pole (M_t) & \overline{MS} ($\overline{m_t}$) masses (IR renormalons) $\Rightarrow \Delta \overline{m_t} = \pm 0.6 \text{ GeV}$

- Poor perturbative series between pole (M_t) & \overline{MS} ($\overline{m_t}$) masses (IR renormalons) $\Rightarrow \Delta \overline{m_t} = \pm 0.6 \text{ GeV}$
- Which top mass definition is measured in kinematic reconstruction (pp, pp, e⁺e⁻)?

- Poor perturbative series between pole (M_t) & \overline{MS} ($\overline{m_t}$) masses (IR renormalons) $\Rightarrow \Delta \overline{m_t} = \pm 0.6 \text{ GeV}$
- Which top mass definition is measured in kinematic reconstruction (pp, pp, e⁺e⁻)?
- ✓ e⁺e⁻ → tt (Fleming, Hoang, Mantry, Stewart 2008): factorization theorem expressing d²σ/dM_tdM_t (jet invariant masses) in terms of a top-resonance mass (m_t) with |m_t − M_t| ≤ $O(\Gamma_t)$ (ruling out m_t)

- Poor perturbative series between pole (M_t) & \overline{MS} ($\overline{m_t}$) masses (IR renormalons) $\Rightarrow \Delta \overline{m_t} = \pm 0.6$ GeV
- Which top mass definition is measured in kinematic reconstruction (pp, pp, e⁺e⁻)?
- ✓ e⁺e⁻ → tt (Fleming, Hoang, Mantry, Stewart 2008): factorization theorem expressing d²σ/dM_tdM_t (jet invariant masses) in terms of a top-resonance mass (m_t) with |m_t − M_t| ≤ $O(\Gamma_t)$ (ruling out m_t)
- ✓ LHC (Hoang, Stewart, 2008): $m_t \equiv M_t$ (MSR mass), $M_t(M_t) = \overline{m}_t(\overline{m}_t)$; $M_t = M_t(3^{+6}-2 \text{ GeV})$ at large p_T

vN and $\overline{v}N$ -DIS (NuTeV)
• 2.0 σ deviation from SM (in flux), effect of K_{e3} BR?

- 2.0 σ deviation from SM (in flux), effect of K_{e3} BR?
- was 2.7 σ before inclusion of $\int dx x (S \overline{S}) = 0.0020 \pm 0.0014$ (NuTeV now agrees with CTEQ)

- 2.0 σ deviation from SM (in flux), effect of K_{e3} BR?
- was 2.7 σ before inclusion of $\int dx \times (S \overline{S}) = 0.0020 \pm 0.0014$ (NuTeV now agrees with CTEQ)
- new QED radiative corrections (Diener, Dittmaier, Hollik), but not yet included by NuTeV

- 2.0 σ deviation from SM (in flux), effect of K_{e3} BR?
- was 2.7 σ before inclusion of ∫ dx x (S S) = 0.0020 ± 0.0014 (NuTeV now agrees with CTEQ)
- new QED radiative corrections (Diener, Dittmaier, Hollik), but not yet included by NuTeV
- CSV due to "quark model" and "QED splitting effects" can each remove Ι σ; phenomenological CSV PDFs can remove/double the effect (MRST)

- 2.0 σ deviation from SM (in flux), effect of K_{e3} BR?
- was 2.7 σ before inclusion of ∫ dx x (S S) = 0.0020 ± 0.0014 (NuTeV now agrees with CTEQ)
- new QED radiative corrections (Diener, Dittmaier, Hollik), but not yet included by NuTeV
- CSV due to "quark model" and "QED splitting effects" can each remove Ι σ; phenomenological CSV PDFs can remove/double the effect (MRST)
- nuclear effects: different for NC and CC; 20% of effect, both signs possible (Brodsky, Schmidt, Yang)

Muon g-2 (BNL)

Muon g-2 (BNL)

• E-821: 2.7-3.4 σ (3×10⁻⁹) SM deviation (in flux)

Muon g-2 (BNL)

- E-821: 2.7-3.4 σ (3×10⁻⁹) SM deviation (in flux)
- SUSY with tan $\beta \gg 1$, light superpartners, sign(μ) > 0?

Muon g-2 (BNL)

- E-821: 2.7-3.4 σ (3×10⁻⁹) SM deviation (in flux)
- SUSY with tan $\beta \gg 1$, light superpartners, sign(μ) > 0?
- 2-loop vacuum polarization (dispersion relation): T data inconsistent with e⁺e⁻: enhanced CVC? CMD 2, SND, KLOE inconsistent with BaBar (RR) & Belle (T): 3.4 → 1.7 σ after BaBar result on R(s)?

Muon g-2 (BNL)

- E-821: 2.7-3.4 σ (3×10⁻⁹) SM deviation (in flux)
- SUSY with tan $\beta \gg 1$, light superpartners, sign(μ) > 0?
- 2-loop vacuum polarization (dispersion relation): T data inconsistent with e⁺e⁻: enhanced CVC? CMD 2, SND, KLOE inconsistent with BaBar (RR) & Belle (T): 3.4 → 1.7 σ after BaBar result on R(s)?
- 3-loop γ × γ (not first principles calculations!): π⁰ + VMD: (1.16 ± 0.40)×10⁻⁹ (Nyffeler 2009) free quarks: < 1.59×10⁻⁹ (Toledo, JE 2006)

g-2: vacuum polarization

g-2: light × light

- free quark estimate (using quark masses for running α)
- exact for infinitely heavy quarks (short distance ok)
- overestimate in chiral limit with m_{μ}/m_{π} fixed (charged pointlike pions contribute negatively)
- VMD:: $(1.36 \pm 0.25) \times 10^{-9}$ (error:"rough guess"; $\mu \sim 0.6$ GeV) Melnikov, Vainshtein (2004)

free quarks
$$\begin{cases} (1.37^{-0.27}_{+0.15}) \times 10^{-9} \\ < 1.59 \times 10^{-9} (95\% \text{ CL}) \end{cases}$$