Precision QCD with Jet observables

Aude Gehrmann-De Ridder

(with R. Boughezal, A. Daleo, T. Gehrmann, N. Glover,

G. Heinrich, G. Luisoni, D. Maître, M. Ritzmann)

ETH Zürich

LoopFest VIII, Madison, USA 07.05.2009

Precision physics with jets

Jet observables

- testing ground for QCD: perturbation theory, logarithmic resummation, power corrections
- lacksquare enable a precise determination of the strong coupling constant $lpha_s$
 - in e^+e^- from $e^+e^- \rightarrow 3j$ and event shapes
 - in ep from $ep \rightarrow (2+1)j$
 - in $p\bar{p}$ from $p\bar{p} \rightarrow 1j + X$
- Determination of α_s so far dominated by theoretical uncertainty
 - example: in e^+e^- from jets:

 $\alpha_s(M_Z) = 0.1202 \pm 0.0003(\text{stat}) \pm 0.0009(\text{sys}) \pm 0.0009(\text{had}) \pm 0.0047(\text{scale})$

- enable a better knowledge of the gluon distribution in the proton from $ep \rightarrow (2+1)j$ or $pp, \ p\bar{p} \rightarrow 1j + X$
- multijet-signatures often part of signals or backgrounds to new physics searches at present and future colliders
- \longrightarrow Jet observables needed as precisely as possible: at NNLO

NNLO Subtraction

Structure of NNLO *m*-jet cross section:

$$\begin{split} \mathrm{d}\sigma_{NNLO} &= \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\sigma_{NNLO}^R - \mathrm{d}\sigma_{NNLO}^S \right) \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\sigma_{NNLO}^{V,1} - \mathrm{d}\sigma_{NNLO}^{VS,1} \right) \\ &+ \int_{\mathrm{d}\Phi_m} \mathrm{d}\sigma_{NNLO}^{V,2} + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\sigma_{NNLO}^S + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\sigma_{NNLO}^{VS,1} , \end{split}$$

- $\ \, {\rm d}\sigma^{V,2}_{NNLO}: \ \, {\rm two-loop\ virtual\ corrections}$
- Subtraction terms constructed using the antenna subtraction method at NNLO T. Gehrmann, N. Glover, AG.
- Solution Each line above is finite numerically and free of infrared ϵ -poles

$e^+e^- \rightarrow 3$ jets and event shapes

Application of NNLO antenna subtraction

- implemented as parton-level event generator: EERAD3
 T. Gehrmann, E.W.N. Glover, G. Heinrich, AG
- allows to compute jet cross sections and event shapes through to α_s^3 in e^+e^- collisions

$e^+e^- \rightarrow 3$ jets and event shapes

Event shape variables

- Characterize the geometrical properties of final state events, are based on the particle momenta and are infrared safe
 - easily accesible experimentally

e.g. Thrust in e^+e^-

$$T = \max_{\vec{n}} \frac{\sum_{i=1}^{n} |\vec{p_i} \cdot \vec{n}|}{\sum_{i=1}^{n} |\vec{p_i}|}$$

limiting values:

- back-to-back (two-jet) limit: T = 1
- spherical limit: T = 1/2

Event shapes variables

Standard Set of LEP

Thrust (E. Farhi)

 $T = \max_{\vec{n}} \left(\sum_{i=1}^{n} |\vec{p_i} \cdot \vec{n}| \right) / \left(\sum_{i=1}^{n} |\vec{p_i}| \right)$

Heavy jet mass (L. Clavelli, D. Wyler)

$$\rho = M_i^2 / s = \frac{1}{E_{\text{vis}}^2} \left(\sum_{k \in H_i} |\vec{p_k}| \right)^2$$

C-parameter: eigenvalues of the tensor (G. Parisi)

$$\Theta^{\alpha\beta} = \frac{1}{\sum_{k} |\vec{p_k}|} \frac{\sum_{k} p_k^{\alpha} p_k^{\beta}}{\sum_{k} |\vec{p_k}|}$$

Jet broadenings (S. Catani, G. Turnock, B. Webber)

$$B_i = \left(\sum_{k \in H_i} |\vec{p_k} \times \vec{n}_T|\right) / \left(2\sum_k |\vec{p_k}|\right)$$

 $B_W = \max(B_1, B_2)$ $B_T = B_1 + B_2$

S.Catani, Y.L.Dokshitzer, M.Olsson, G.Turnock, B.Webber

Event shapes at NNLO

Event shape observables : $\frac{1}{\sigma_{had}}y\frac{d\sigma}{dy}$ (y: event shape variable)

- NNLO corrections sizeable, non uniform
- theoretical uncertainty reduced
- Perturbative results of all event shape observables reliable between
 - 2 jet region: (y → 0), the observables diverge like $1/y \ln^a y$, (a = 2 (NLO) and a = 3 (NNLO))
 - multi-jet region: (large y), the observables vanish, the event shape variables y are bound kinematically (example: (LO) Thrust (1 T) < 1/3)
- Applications of event shapes calculated at NNLO
 - matching onto NLLA possible to improve results towards the 2-jet region G. Luisoni, H. Stenzel, T. Gehrmann
 - new extraction of α_s, based on NNLO or NNLO+NLLA G. Dissertori, T. Gehrmann, E.W.N. Glover, G. Heinrich, G. Luisoni, H. Stenzel, AG, work in progress
 - Moments of event shapes
 - 🥭 but: . . .

$$e^+e^- \rightarrow 3$$
 jets and event shapes

Comparison with other groups

- comparison with SCET-based calculation of logarithmically enhanced terms: discrepancy in two colour factors in two-jet region (kinematic limit)
 T. Becher, M. Schwartz
- independent implementation of antenna subtraction uncovered oversubtraction of large-angle soft gluon emission (S. Weinzierl)
 - corrected by introducing soft antenna function in N^2 and N^0 colour factors

$$\begin{aligned} \mathcal{S}_{ac;ik} &= \int \mathrm{d}\Phi_{X_{ijk}} S_{ajc} \\ &= (s_{IK})^{-\epsilon} \frac{\Gamma^2 (1-\epsilon) e^{\epsilon\gamma}}{\Gamma(1-3\epsilon)} \left(-\frac{2}{\epsilon}\right) \left[-\frac{1}{\epsilon} + \ln\left(x_{ac,IK}\right) + \epsilon \operatorname{Li}_2\left(-\frac{1-x_{ac,IK}}{x_{ac,IK}}\right)\right] \\ x_{ac,IK} &= \frac{s_{ac} s_{IK}}{(s_{aI} + s_{aK})(s_{cI} + s_{cK})} \end{aligned}$$

now: numerical agreement with S. Weinzierl, discrepancy with SCET resolved

Event shapes at NNLO

NNLO expression for Thrust

$$(1-T)\frac{1}{\sigma_{\text{had}}}\frac{\mathrm{d}\sigma}{\mathrm{d}T} = \left(\frac{\alpha_s}{2\pi}\right)A(T) + \left(\frac{\alpha_s}{2\pi}\right)^2\left(B(T) - 2A(T)\right) \\ + \left(\frac{\alpha_s}{2\pi}\right)^3\left(C(T) - 2B(T) - 1.64A(T)\right)$$

with LO contribution A(T), NLO contribution B(T), NNLO contribution C(T)

for all event shapes

- In the three-jet region (relevant for phenomenology) changes have only minor numerical impact
- In the 2-jet region, changes lift the discrepancies

The n^{th} moment of an event-shape variable y

$$\langle y^n \rangle = \frac{1}{\sigma_{\text{had}}} \int_0^{y_{\text{max}}} y^n \frac{\mathrm{d}\sigma}{\mathrm{d}y} \mathrm{d}y$$

with

$$\langle y^n \rangle = \langle y^n \rangle_{\rm pt} + \langle y^n \rangle_{\rm np}$$

Moments with $1 \le n \le 5$ have been measured by JADE and OPAL for Q = 10 - 206 GeV

Aim: extract non-perturbative part $\langle y^n \rangle_{np}$ by comparing the data with the calculated perturbative part $\langle y^n \rangle_{pt}$

Iarge range of energies considered to disentangle the nature of the corrections needed: power-like (1/Q), perturbative $(1/\ln(Q))$

the perturbative part $\langle y^n \rangle_{pt}$ is computed to NNLO (with EERAD3) using

$$\langle y^n \rangle (s, \mu^2 = s) = \left(\frac{\alpha_s}{2\pi}\right) \bar{\mathcal{A}}_{y,n} + \left(\frac{\alpha_s}{2\pi}\right)^2 \bar{\mathcal{B}}_{y,n} + \left(\frac{\alpha_s}{2\pi}\right)^3 \bar{\mathcal{C}}_{y,n} + \mathcal{O}(\alpha_s)^4$$

coefficients: dimensionless numbers for each moment and event shape variable

Moments require integration over full phase space

$$\langle y^n \rangle = \frac{1}{\sigma_{\text{had}}} \int_0^{y_{\text{max}}} y^n \frac{\mathrm{d}\sigma}{\mathrm{d}y} \mathrm{d}y$$

- all event shapes diverge like $1/y \ln^a y$ for $y \to 0$, (a = 2 (NLO) and a = 3 (NNLO))
- **•** moments are finite for $n \ge 1$
- the evaluation of the first moment is particularly challenging
 - receives sizable contribution from the $y \rightarrow 0$ region
 - contains integrable logarithmic singularity
 - in practise: introduce technical cut-offs on the event shape variable and the phase space invariants
- b the higher n is, the more the moments are sensitive on the multi-jet region (large y)

Behaviour of NNLO corrections

K-factors for $\mu = Q$ normalised to LO, for $\alpha_s = 0.124$

size of corrections increases with n for (1 - T), C, B_T

size of corrections constant ($\mathcal{K}_{NNLO} \approx 1.3$) with n for ρ , Y_3 , B_W

Precision QCD with Jet observables - p.12

Energy dependence of the first moment

[Data: JADE and OPAL collaborations]

Results:

- reduced theoretical uncertainty in all variables
- describe Y_3 and B_W largely without power corrections
- potentially large power corrections, especially in ρ and (1 - T) for low Q
- same features observed for higher moments —> full kinematical range concerned

Next step:

Precision jet observables at hadron colliders HERA (ep), Tevatron ($p\bar{p}$) and LHC (pp)

Towards NNLO antenna subtraction with hadronic initial states

Incoming hadrons

Colour-ordered antenna functions

Antenna Functions

- colour-ordered pair of hard partons (radiators) with radiation in between
 - hard quark-antiquark pair
 - hard quark-gluon pair
 - hard gluon-gluon pair
- \checkmark three-parton antenna \longrightarrow one unresolved parton
- **four-parton antenna** \longrightarrow two unresolved partons
- can be at tree level or at one loop
- all three-parton and four-parton antenna functions can be derived from physical matrix elements, normalised to two-parton matrix elements

 - **9** gg from $H \to gg + X$

Real Radiation: $2 \rightarrow 3$

- \checkmark obtain antenna functions by crossing $1 \rightarrow 4$ NNLO antennae
- phase space factorization:

$$d\Phi_{m+2}(k_1, \dots, k_j, k_k, k_l, \dots, k_{m+2}; p, r) = d\Phi_m(k_1, \dots, K_L, \dots, k_{m+2}; xp, r) \frac{Q^2}{2\pi} d\Phi_3(k_j, k_k, k_l; p, q) \frac{dx}{x}$$

A. Daleo, D. Maître, T. Gehrmann

- integrated antenna functions: inclusive three-particle phase space integrals with q^2 and $z = -q^2/(2q \cdot p)$ fixed
- similar to NNLO deep-inelastic coefficient functions W.L. van Neerven, E.B. Zijlstra

Real Radiation: $2 \rightarrow 3$

boundary conditions: very similar to inclusive $1 \rightarrow 4$ phase space master intergals T. Gehrmann, G. Heinrich, AG

Real Radiation at One Loop: $2 \rightarrow 2$

- I obtain antenna functions by crossing one-loop $1 \rightarrow 3$ NNLO antennae
- - phase space factorization:

$$d\Phi_{m+1}(k_1, \dots, k_j, k_k, \dots, k_{m+1}; p, r) = d\Phi_m(k_1, \dots, K_K, \dots, k_{m+1}; xp, r) \frac{Q^2}{2\pi} d\Phi_2(k_j, k_k; p, q) \frac{dx}{x}$$

Integrated antenna functions: inclusive two-particle phase space integrals of one-loop matrix elements with q^2 and $z = -q^2/(2q \cdot p)$ fixed

Real Radiation at One Loop: $2 \rightarrow 2$

- reduce to master integrals
- **Solution** most yield trivial Γ -functions
 - non-trivial ones computed using differential equations

V[1,3]

NNLO results

A. Daleo, T. Gehrmann, G. Luisoni, AG

- obtain full set of integrated $2 \rightarrow 3$ tree-level and $2 \rightarrow 2$ one-loop antenna functions
- Check in progress: combination of those yields NNLO deep inelastic coefficient functions for quarks and gluons
 E.B. Zijlstra, W.L. van Neerven; S. Moch, J. Vermaseren
- pole terms combine into two-loop deep inelastic splitting functions
- all ingredients for NNLO corrections to (2+1)-jet production in deep inelastic scattering

Real Radiation: $2 \rightarrow 3$

- \checkmark obtain antenna functions by crossing $1 \rightarrow 4$ NNLO antennae
- phase space factorization: (A. Daleo, T. Gehrmann, D. Maître)

$$d\Phi_{m+2}(k_1, \dots, k_i, k_j, k_k, k_l, \dots, k_{m+2}; p_1, p_2) = d\Phi_m(\tilde{k}_1, \dots, \tilde{k}_i, \tilde{k}_l, \dots, \tilde{k}_{m+2}; x_1 p_1, x_2 p_2) \times \delta(x_1 - \hat{x}_1) \, \delta(x_2 - \hat{x}_2) \, [dk_j] \, [dk_k] \, dx_1 \, dx_2$$
$$\hat{x}_1 = \left(\frac{s_{12} - s_{j2} - s_{k2}}{s_{12}} \, \frac{s_{12} - s_{1j} - s_{1k} - s_{j2} - s_{k2} + s_{jk}}{s_{12} - s_{1j} - s_{1k}}\right)^{\frac{1}{2}}$$
$$\hat{x}_2 = \left(\frac{s_{12} - s_{1j} - s_{1k}}{s_{12}} \, \frac{s_{12} - s_{1j} - s_{1k} - s_{j2} - s_{k2} + s_{jk}}{s_{12} - s_{12} - s_{1k}}\right)^{\frac{1}{2}}$$

- integration: inclusive three-particle phase space integrals with q² and x₁, x₂ fixed
 similar to NNLO coefficient functions for differential Drell-Yan production
 C. Anastasiou, L.J. Dixon, K. Melnikov, F. Petriello
 - work in progress: 32 Master integrals (R. Boughezal, M. Ritzmann, AG)

Precision QCD with Jet observables - p.22

Summary and outlook

Antenna subtraction method

- based on collecting all radiation between a colour-ordered pair of two hard emitters
- allows subtraction of infrared divergences at NLO and NNLO
- three configurations for emitters: final-final, initial-final, initial-initial
- final-final fully solved and applied to $e^+e^- \rightarrow 3$ jets, phenomenology still ongoing
- Newest results: Moments of event shapes

Initial-final antenna functions

- established phase space factorization
- computed by reduction to master integrals and differential equations
 - will allow to compute $ep \rightarrow e + (2+1)j$ in DIS

Initial-initial antenna functions

- established phase space factorization
- work in progress

Back-up slides

Event shapes at NNLO

NNLO thrust and heavy mass distributions

- theory uncertainty reduced by about 40 %
- Iarge 1 T, $\rho > 0.33$: kinematically forbidden at LO
- Small 1 T, ρ : two-jet region, need matching onto NLL resummation T. Gehrmann, G. Luisoni, H. Stenzel

Colour structure of NNLO 3-jet

Decomposition into leading and subleading colour terms

$$\sigma_{NNLO} = (N^2 - 1) \left[N^2 A_{NNLO} + B_{NNLO} + \frac{1}{N^2} C_{NNLO} + NN_F D_{NNLO} + \frac{N_F}{N} E_{NNLO} + N_F^2 F_{NNLO} + N_{F,\gamma} \left(\frac{4}{N} - N \right) G_{NNLO} \right]$$

last term: closed quark loop coupling to vector boson, numerically tiny

$$N_{F,\gamma} = \frac{\left(\sum_{q} e_{q}\right)^{2}}{\sum_{q} e_{q}^{2}}$$

- most subleading colour: C_{NNLO} , E_{NNLO} , F_{NNLO} , (G_{NNLO}) QED-type contributions: gluons \rightarrow photons
 - simplest term: F_{NNLO} , only 3 parton and 4 parton contributions

Quark-antiquark

consider subleading colour (gluons photon-like)

$$|M_{q\bar{q}ggg}|^2(1,3,4,5,2) \xrightarrow{1||3} |M_{q\bar{q}gg}|^2(\widetilde{13},4,5,\widetilde{23}) \times X_{132}$$

with

$$X_{132} = \frac{|M_{q\bar{q}g}|^2}{|M_{q\bar{q}}|^2} \equiv A_3^0(1_q, 3_g, 2_{\bar{q}})$$

Quark-gluon

Off-shell matrix element: violates SU(3) gauge invariance

Quark-gluon

Construct colour-ordered qg antenna function from SU(3) gauge-invariant decay: neutralino \rightarrow gluino + gluon (T. Gehrmann, E.W.N. Glover, AG)

 $\tilde{\chi}$: spin 1/2, colour singlet \tilde{g} : spin 1/2, colour octet g : spin 1, colour octet

Gluino \tilde{g} mimics quark and antiquark (same Dirac structure), but is octet in colour space

 $\tilde{\chi} \rightarrow \tilde{g}g$ described by effective Lagrangian H. Haber, D. Wyler

$$\mathcal{L}_{\rm int} = i\eta \overline{\psi}^a_{\tilde{g}} \sigma^{\mu\nu} \psi_{\tilde{\chi}} F^a_{\mu\nu} + (\text{h.c.})$$

Antenna function

$$X_{134} = \frac{|M_{\tilde{g}q'\bar{q}'}|^2}{|M_{\tilde{g}g}|^2} \equiv E_3^0(1_q, 3_{q'}, 4_{\bar{q}'})$$

 $|M_{q\bar{q}gggg}|^2(1,3,4,5,2) \xrightarrow{3||4} |M_{q\bar{q}gg}|^2(1,\widetilde{34},\widetilde{45},2) \times X_{345}$

 $H \rightarrow gg$ described by effective Lagrangian F. Wilczek; M. Shifman, A. Vainshtein, V. Zakharov

$$\mathcal{L}_{\rm int} = \frac{\lambda}{4} H F^a_{\mu\nu} F^{\mu\nu}_a$$

Antenna function

$$X_{345} = \frac{|M_{ggg}|^2}{|M_{gg}|^2} \equiv F_3^0(3_g, 4_g, 5_g)$$

Event shapes at NNLO

NNLO corrections: broadenings

wide jet boadening B_W

0.7 0.8 B_W 1/ σ_{had} do/d B_W B_T 1/ σ_{had} do/d B_T ALEPH data **NNLO NNLO** ALEPH data 0.6 NLO NLO 0.6 0.5 LO LO 0.4 0.4 $Q = M_7$ $Q = M_7$ 0.3 $\alpha_{s}(M_{7}) = 0.1189$ $\alpha_{s} (M_{7}) = 0.1189$ 0.2 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0 B_{W} B_τ

total jet boadening B_T

- **I** NNLO corrections for B_W smaller than for B_T
- again require matching onto NLL resummation and hadronization corrections
- **D** observe: small corrections for Y_3 ; large corrections for C
- reduction of dependence on renormalisation scale by 30–60%

Three-jet cross section at NNLO

NNLO corrections: jet rates

substantial improvement towards lower $y_{\rm cut}$

two-jet rate now NNNLO

Event shapes at NNLO+NLLA

NNLO+NLLA thrust and heavy mass

(NNLO +NLLA) compared to (NNLO) prediction

- slightly better description towards the 2-jet limit
- In the 3-jet region, two predictions in agreement
- further improvement needed: by including hadronization corrections