Cross-sections for Higgs production

Daniel de Florian Universidad de Buenos Aires - Argentina

LoopFest VIII Radiative Corrections for the LHC and the ILC Madison, May 7 2009

in collaboration with Massimiliano Grazzini

deF, Grazzini (2009) Catani, deF, Grazzini, Nason (2003)

Outline

- Higgs production : gluon fusion
- Soft-virtual contributions
- Resummation
- Opdate on Higgs production
- Summary

Total cross-section

$$\frac{\alpha_s(\mu_R^2)}{\pi} \bigg)^4 G_{ab}^{(2)}(z; M_H^2/\mu_R^2; M_H^2/\mu_F^2) + \mathcal{O}(\alpha_s^5)$$

- Marzani et al (2008)
- If full Born result is retained \longrightarrow calculation of G coefficients
- Not a good approximation for 'bottom' ! dominated by b-t interference: small and negative

Dawson (1991); Djouadi, Spira, Zerwas (1991)

NNLO Harlander, Kilgore (2002); Anastasiou, Melnikov (2002); Ravindran, Smith, van Neerven (2003)

QCD corrections are very large

NLO

• K-factors defined with respect $\sigma_{LO}(\mu_F = K_R factor)$ defined with respect $\sigma_{LO}(\mu_F = \mu_F)$

Take a look at the coefficients

LO

$$z = M_H^2 / \hat{s}$$

$$G_{ab}^{(0)}(z) = \delta_{ag} \delta_{bg} \, \delta(1-z)$$

$$\blacksquare \text{ NLO}$$

$$G_{gg}^{(1)}(z; M_{H}^{2}/\mu_{R}^{2}; M_{H}^{2}/\mu_{F}^{2}) = \left(\frac{11}{2} + 6\zeta(2) + \frac{33 - 2N_{f}}{6} \ln \frac{\mu_{R}^{2}}{\mu_{F}^{2}}\right) \delta(1-z)$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right) + 12 \left(\frac{\ln(1-z)}{1-z}\right)_{+}$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right) + 12 \left(\frac{\ln(1-z)}{z\mu_{F}^{2}}\right) + 12 \left(\frac{\ln(1-z)}{2}\right)_{+}$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right) + 12 \left(\frac{\ln(1-z)}{z\mu_{F}^{2}}\right) + 12 \left(\frac{\ln(1-z)}{2}\right)_{+}$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right) + 12 \left(\frac{\ln(1-z)}{z\mu_{F}^{2}}\right) + 12 \left(\frac{\ln(1-z)}{2}\right)_{+}$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right) + 12 \left(\frac{\ln(1-z)}{z\mu_{F}^{2}}\right) + 12 \left(\frac{\ln(1-z)}{2}\right)_{+}$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right) + 12 \left(\frac{\ln(1-z)}{z\mu_{F}^{2}}\right) + 12 \left(\frac{\ln(1-z)}{2}\right) + 12 \left(\frac{\ln(1-z)}{2}\right) + 12 \left(\frac{\ln(1-z)}{z\mu_{F}^{2}}\right) + 12 \left(\frac{\ln(1-z)}{2}\right) + 12 \left(\frac{\ln(1-z)}{2}\right) + 12 \left(\frac{\ln(1-z)}{2}\right) + 12 \left(\frac{\ln(1-z)}{z\mu_{F}^{2}}\right) + 12 \left(\frac{\ln(1-z)}{z\mu_{F}^{2}}\right$$

Take a look at the coefficients

LO

$$z = M_H^2 / \hat{s}$$

$$G_{ab}^{(0)}(z) = \delta_{ag} \delta_{bg} \, \delta(1-z)$$

$$= \text{NLO}$$

$$G_{gg}^{(1)}(z; M_{H}^{2}/\mu_{R}^{2}; M_{H}^{2}/\mu_{F}^{2}) = \left(\frac{11}{2} + 6\zeta(2) + \frac{33 - 2N_{f}}{6} \ln \frac{\mu_{R}^{2}}{\mu_{F}^{2}}\right) \delta(1-z) \text{ singular } z \to 1$$

$$+ 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right)_{+} + 12 \left(\frac{\ln(1-z)}{1-z}\right)_{+}$$

$$+ \left(P_{gg}^{real}(z) - \frac{2C_{A}}{1-z}\right) \ln \frac{M_{H}^{2}(1-z)^{2}}{z\mu_{F}^{2}} \quad \text{(Pure) collinear} \\ \ln \frac{q_{T}^{2}}{\mu_{F}^{2}} - \frac{11}{2} \frac{(1-z)^{3}}{z} \qquad \text{Hard}$$

• Why $z \to 1$ if $S \gg M_H^2 \ (\tau \ll 1)$

• Take a look at the coefficients $z = M_H^2/\hat{s}$ • LO $G_{ab}^{(0)}(z) = \delta_{ag}\delta_{bg} \, \delta(1-z)$

NLO

$$G_{gg}^{(1)}(z; M_{H}^{2}/\mu_{R}^{2}; M_{H}^{2}/\mu_{F}^{2}) = \left(\frac{11}{2} + 6\zeta(2) + \frac{33 - 2N_{f}}{6} \ln \frac{\mu_{R}^{2}}{\mu_{F}^{2}}\right) \delta(1-z) \text{ singular } z \to 1$$

$$+ 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right)_{+} + 12 \left(\frac{\ln(1-z)}{1-z}\right)_{+}$$

$$+ \left(P_{gg}^{real}(z) - \frac{2C_{A}}{1-z}\right) \ln \frac{M_{H}^{2}(1-z)^{2}}{z\mu_{F}^{2}} \quad \text{(Pure) collinear} \\ \ln \frac{q_{T}^{2}}{\mu_{F}^{2}}$$

$$- \frac{11}{2} \frac{(1-z)^{3}}{z} \qquad \text{Hard}$$

• Why $z \to 1$ if $S \gg M_H^2$ $(\tau \ll 1)$ Luminosity (gluon pdf) $\langle \hat{s} \rangle = \langle x_1 x_2 s \rangle \ll S$

Partonic Threshold :"Singular" contributions are dominant

Take a look at the coefficients

LO

$$z = M_H^2 / \hat{s}$$

$$G_{ab}^{(0)}(z) = \delta_{ag} \delta_{bg} \, \delta(1-z)$$

$$\blacksquare \text{ NLO}$$

$$G_{gg}^{(1)}(z; M_{H}^{2}/\mu_{R}^{2}; M_{H}^{2}/\mu_{F}^{2}) = \left(\frac{11}{2} + 6\zeta(2) + \frac{33 - 2N_{f}}{6} \ln \frac{\mu_{R}^{2}}{\mu_{F}^{2}}\right) \delta(1-z)$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right)_{+} + 12 \left(\frac{\ln(1-z)}{1-z}\right)_{+}$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right)_{+} + 12 \left(\frac{\ln(1-z)}{2\mu_{F}^{2}}\right)_{+}$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right)_{+} + 12 \left(\frac{\ln(1-z)}{z\mu_{F}^{2}}\right)_{+}$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right)_{+} + 12 \left(\frac{\ln(1-z)}{2\mu_{F}^{2}}\right)_{+}$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{1-z}\right)_{+} + 12 \left(\frac{\ln(1-z)}{z\mu_{F}^{2}}\right)_{+}$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{z\mu_{F}^{2}}\right)_{+} + 12 \left(\frac{\ln(1-z)}{z\mu_{F}^{2}}\right)_{+}$$

$$= 6 \ln \frac{M_{H}^{2}}{z\mu_{F}^{2}} \left(\frac{1}{z\mu_{F}^{2}}\right)_{+} + 12 \left(\frac{1}{z\mu_{F}^{2}}\right)_{+}$$

• Why $z \to 1$ if $S \gg M_H^2$ $(\tau \ll 1)$ Luminosity (gluon pdf) $\langle \hat{s} \rangle = \langle x_1 x_2 s \rangle \ll S$

• Partonic Threshold :"Singular" contributions are dominant $G_{qg}^{(1)}$ and $G_{q\bar{q}}^{(1)}$: no singular contributions

x-space not the best to look at "soft" approximations : distributions

Natural space Mellin (also for resummation)

$$G_N = \int_0^1 dx \, x^{N-1} G(x) \qquad z \to 1 \longrightarrow N \to \infty$$

$$\left[\left(\frac{\ln(1-z)}{1-z} \right)_{+} \right]_{N} = \frac{1}{2} (\ln N + \gamma_{E})^{2} + \frac{\zeta(2)}{2} + \mathcal{O}(1/N)$$

$$[\delta \left(1-z\right)]_N = 1$$

$$[\ln(1-z)]_N = \frac{\ln N}{N} + \dots$$

$$[z]_N = \mathcal{O}(1/N)$$

Define 'Soft-Virtual' terms as those containing : lnⁱ N and constant not O(1/N)
 'Collinear' terms : lnN/N Leading collinear terms : Soft-Virtual-Collinear
 'Hard' terms : O(1/N) small even for not very large N !

Check approximation gg

$$\Delta^{SV}(\mu) = \frac{\sigma^{SV}(\mu_F = \mu_R = \mu M_H) - \sigma(\mu_F = \mu_R = \mu M_H)}{\sigma(\mu_F = \mu_R = \mu M_H)}$$

Tevatron MSTW2008

Reproduces gg channel at the % level : soft-virtual terms clearly dominate

- Not only identify dominant contributions : origin prediction
- Logs originate from soft-gluon (collinear) emission : UNIVERSAL Factorization

Include multiple soft-gluon emission to all orders (to certain logarithmic accuracy)

Resummation is achieved by showing that logarithmic contributions exponentiate Sterman (1987); Catani, Trentadue (1989)

$$G_{gg,N}^{(\text{res})} = \alpha_s^2 \ C_{gg}(\alpha_s) \ \Delta_N^H(\alpha_s, N)$$

Constant In N

Fully account for all Soft-virtual contributions

Resummation is achieved by showing that logarithmic contributions exponentiate Sterman (1987); Catani, Trentadue (1989)

$$G_{gg,N}^{(\text{res})} = \alpha_s^2 \ C_{gg}(\alpha_s) \ \Delta_N^H(\alpha_s, N)$$
Constant In N
Sudakov radiative factor
$$\Delta_N^H(\alpha_s) = [\Delta_N^g(\alpha_s, N)]^2 \Delta_N^{(\text{int})H}(\alpha_s, N)$$

Fully account for all Soft-virtual contributions

 $\Delta_N(\alpha_s) = [\Delta_N(\alpha_s, N)] \ \Delta_N \qquad (\alpha_s, N)$

soft-gluon collinear to parton $\Delta_N^g(\alpha_s, N) = \exp\left\{\int_0^1 dz \; \frac{z^{N-1} - 1}{1 - z} \int_{\mu_T^2}^{(1-z)^2 M_H^2} \frac{dq^2}{q^2} A_g(\alpha_s(q^2))\right\}$

soft-gluon at large angles

$$\Delta_N^{(\text{int})H}(\alpha_s, N) = \exp\left\{\int_0^1 dz \; \frac{z^{N-1} - 1}{1 - z} \; D_H(\alpha_s((1 - z)^2 M_H^2))\right\}$$

Resummation is achieved by showing that logarithmic contributions exponentiate Sterman (1987); Catani, Trentadue (1989)

$$G_{gg,N}^{(\text{res})} = \alpha_s^2 \ C_{gg}(\alpha_s) \ \Delta_N^H(\alpha_s, N)$$

Constant In N

Fully account for all Soft-virtual contributions

Sudakov radiative factor

 $\Delta_N^H(\alpha_s) = \left[\Delta_N^g(\alpha_s, N)\right]^2 \Delta_N^{(\text{int})H}(\alpha_s, N)$

soft-gluon collinear to parton $\Delta_N^g(\alpha_s, N) = \exp\left\{\int_0^1 dz \; \frac{z^{N-1} - 1}{1 - z} \int_{\mu_F^2}^{(1-z)^2 M_H^2} \frac{dq^2}{q^2} A_g(\alpha_s(q^2))\right\}$

soft-gluon at large angles

$$\Delta_N^{(\text{int})H}(\alpha_s, N) = \exp\left\{\int_0^1 dz \; \frac{z^{N-1} - 1}{1 - z} \; D_H(\alpha_s((1 - z)^2 M_H^2))\right\}$$

Coefficients have a expansion free of logs

$$C_{gg} = 1 + \frac{\alpha_s}{\pi} C_{gg}^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 C_{gg}^{(2)} + \dots \quad \text{Process dependent}$$

soft term of AP kernel $A_g = \frac{\alpha_s}{\pi} A_g^{(1)} + \left(\frac{\alpha_s}{\pi}\right)^2 A_g^{(2)} + \left(\frac{\alpha_s}{\pi}\right)^3 A_g^{(3)} + \dots$ Universal

$$D_H = \left(\frac{\alpha_s}{\pi}\right)^2 D_H^{(2)} + \dots$$
 Process dependent

• Some constant terms might exponentiate, but better keep the expansion well organized \sim constant in normalization C $\ln \Delta_N^H \sim \alpha_s^n \ln^{n+1} N + \alpha_s^n \ln^n N + \alpha_s^n \ln^{n-1} N + \dots$ $\lim_{ll} NLL NLL NLL towers of logs$ $1 \qquad C^{(1)} \qquad C^{(2)} \qquad \alpha_s^k \ln^{2k-4} N \text{ in } \sigma$

full accuracy at NNLO (k=2)

Parisi (1980); Laenen, Sterman (1990); Eynck, Laenen, Magnea (2003); Ahrens, Becher, Neubert, Yang (2008) Some constant terms might exponentiate, but better keep the expansion well organized constant in normalization C systematic $\ln \Delta_N^H \sim \alpha_s^n \ln^{n+1} N + \alpha_s^n \ln^n N + \alpha_s^n \ln^{n-1} N + \dots$ expansion towers of logs LL NLL **NNLL** $C^{(1)}$ $C^{(2)}$ $- \alpha_s^k \ln^{2k-4} N \text{ in } \sigma$ 1 full accuracy at NNLO (k=2) $\ln \Delta_N^H = \ln N \, q^{(1)}(\lambda) + q^{(2)}(\lambda) + \alpha_s \, q^{(3)}(\lambda) + \dots$ $\lambda = \alpha_s \beta_0 \ln N$ Back from N space: Mellin Inverse $F(x) = \int_{C_{min}}^{C_{MP}+i\infty} \frac{dN}{2\pi i} x^{-N} F(N)$ Landau pole $z \rightarrow 1$ C_{MP} $\exp\left\{\int_{0}^{1} dz \, \frac{z^{N-1}-1}{1-z} \int_{u^{2}}^{(1-z)^{2}M_{H}^{2}} \frac{dq^{2}}{q^{2}} A_{g}(\alpha_{s}(q^{2}))\right\}$ Landau **Physical** pole poles

• Implement "Minimal Prescription" $\lambda \rightarrow 1/2$ pole at very large N

Catani, Mangano, Nason, Trentadue (1996)

Profit from fixed order expansion to provide the best approach : matching

$$\sigma^{res} = \sigma^{N^{k}LL} + \sigma^{N^{k}LO} - \sigma^{N^{k}LL}|_{N^{k}LO}$$
logs
resummed free of logs :`Hard terms'

• Best precision : NNLL+NNLO $g^{(1)}, g^{(2)}, g^{(3)}, C^{(1)}, C^{(2)}$

• Leading collinear term
$$C^{(1)} \rightarrow C^{(1)} + 2A^{(1)} \frac{\ln N}{N}$$
 $\sim \alpha_s^k \frac{\ln^{2k-1} N}{N}$

Profit from fixed order expansion to provide the best approach : matching

$$\sigma^{res} = \sigma^{N^{k}LL} + \sigma^{N^{k}LO} - \sigma^{N^{k}LL}|_{N^{k}LO}$$

$$\log_{resummed} \text{ free of logs :`Hard terms'}$$

Best precision : NNLL+NNLO $g^{(1)}, g^{(2)}, g^{(3)}, C^{(1)}, C^{(2)}$

• Leading collinear term
$$C^{(1)} \rightarrow C^{(1)} + 2A^{(1)} \frac{\ln N}{N}$$
 $\sim \alpha_s^k \frac{\ln^{2k-1} N}{N}$

What about NNNLL ?

 $\checkmark \text{ Exponent already known } g^{(4)} \to \alpha_s^2 (\alpha_s \ln N)^n \quad \text{Moch, Vermaseren, Vogt (2005)}$ $C^{(3)} \text{unknown yet (requires 3-loop form factor)}$ $\alpha_s^3 C^{(3)} \exp g^{(1)} \to \alpha_s^2 (\alpha_s \ln N) (\alpha_s \ln N)^n$

NNNLO missing for matching

Control of factorization and renormalization scale dependence to same logarithmic accuracy Catani, deF, Grazzini, Nason (2003)

Resummation : reduction in scale dependence

Resummation : K-factors Catani, deF, Grazzini, Nason (2003)

- K-factors defined with respec
- With $\mu_{F(R)} = \chi_{L(R)}M_H$ and 0.5

Resummation : K-factors Catani, deF, Grazzini, Nason (2003)

MRST2002

Tevatron

NNLO

Update on Higgs Cross-section

MSTW2008

- * Large modifications in the gluon pdf $\uparrow\downarrow$
- * Change in coupling constant

 $\alpha_s(M_Z) \ 0.1154 \to 0.1171$

 $\sigma \sim \mathcal{O}(\alpha_s^3) \uparrow \sim 5\%$

Update on Higgs Cross-section

Two-loop ElectroWeak corrections computed

Aglietti, Bonciani, Degrassi, Vicini (2004) Degrassi, Maltoni (2004) Actis, Passarino, Sturm, Uccirati (2008) Anastasiou, Boughezal, Petriello (2008)

Χ

Update on Higgs Cross-section

Update to MSTW 2008 NNLO distributions (pdf uncertainties)

• Use effective Lagrangian for top quark contribution and normalize to Born result

Core of the cross-section: top quark contribution computed to NNLL+NNLO accuracy

Include EW effects assuming complete factorization

 $\sigma^{best} = (1 + \delta_{EW}) \, \sigma^{QCD}$

Actis, Passarino, Sturm, Uccirati (2008)

• Update masses $m_t = 170.9 \,\mathrm{GeV}$ $m_b = 4.8 \,\mathrm{GeV}$

Tevatron

 $2003 \rightarrow 2009$

 $m_H = 115 \,\mathrm{GeV} + 9\%$ $m_H = 200 \,\text{GeV} - 9\%$

 $m_H = 170 \,\text{GeV} - 2\%$

TH uncertainties (pert/non-pert.)

• Scale dependence ± 9 to $\pm 10\%$

 $(NNLO \sim 14\%)$ $\mu_{F,R} = \chi_{F,R} M_H$ $0.5 \le \chi_{F,R} \le 2$ $0.5 \le \frac{\chi_F}{\chi_R} \le 2$

				ו				
m_H	$\sigma^{ m best}$	Scale	PDF		m_H	$\sigma^{ m best}$	Scale	PDF
100	1.861	$^{+0.192}_{-0.174}$	$^{+0.094}_{-0.101}$		155	0.492	$+0.045 \\ -0.039$	$+0.036 \\ -0.038$
105	1.618	$+0.165 \\ -0.149$	$^{+0.085}_{-0.091}$		160	0.439	$^{+0.040}_{-0.034}$	$+0.033 \\ -0.035$
110	1.413	$+0.142 \\ -0.127$	$^{+0.077}_{-0.083}$		165	0.389	$^{+0.036}_{-0.030}$	$+0.030 \\ -0.032$
115	1.240	$+0.123 \\ -0.110$	$^{+0.070}_{-0.075}$		170	0.349	$+0.032 \\ -0.027$	$+0.028 \\ -0.029$
120	1.093	$^{+0.107}_{-0.095}$	$^{+0.065}_{-0.069}$		175	0.314	$+0.029 \\ -0.024$	$+0.026 \\ -0.027$
125	0.967	$+0.094 \\ -0.083$	$^{+0.059}_{-0.063}$		180	0.283	$+0.026 \\ -0.021$	$+0.024 \\ -0.025$
130	0.858	$^{+0.082}_{-0.072}$	$+0.054 \\ -0.058$		185	0.255	$^{+0.023}_{-0.019}$	$+0.022 \\ -0.023$
135	0.764	$+0.073 \\ -0.063$	$+0.050 \\ -0.053$		190	0.231	$^{+0.021}_{-0.017}$	$+0.020 \\ -0.021$
140	0.682	$+0.065 \\ -0.056$	$^{+0.046}_{-0.049}$		195	0.210	$+0.019 \\ -0.015$	$+0.019 \\ -0.020$
145	0.611	$+0.057 \\ -0.049$	$+0.042 \\ -0.045$		200	0.192	$+0.017 \\ -0.014$	$+0.018 \\ -0.019$
150	0.548	+0.051 -0.044	+0.039 -0.042					

 $-0.044 \mid -0.042$

• 'PDF uncertainty' ± 6 to $\pm 10\%$

• 'EW uncertainty' : partial vs complete factorization $-3 ext{ to } + 2\%$

LHC

-												
$2003 \rightarrow 2009$		$\sigma^{ m best}$	Scale	PDF	m_H	$\sigma^{ m best}$	Scale	PDF	m_H	$\sigma^{ m best}$	Scale	PDF
		74.58	$+7.18 \\ -7.54$	+1.86 -2.45	170	28.46	$+2.22 \\ -2.39$	$+0.65 \\ -0.84$	240	15.10	$^{+1.03}_{-1.12}$	$+0.37 \\ -0.45$
$m_H = 115 \text{GeV} + 30\%$	110	63.29	$+5.87 \\ -6.20$	+1.54 -2.02	180	25.32	$^{+1.92}_{-2.08}$	$+0.58 \\ -0.74$	250	14.19	$^{+0.95}_{-1.04}$	$+0.36 \\ -0.43$
$m_H = 300 \mathrm{GeV} + 9\%$	120	54.48	$+4.88 \\ -5.18$	$+1.30 \\ -1.70$	190	22.63	$+1.68 \\ -1.83$	$+0.52 \\ -0.66$	260	13.41	$+0.88 \\ -0.97$	$+0.35 \\ -0.41$
mostly pdf and coupling		47.44	$+4.12 \\ -4.38$	$+1.12 \\ -1.45$	200	20.52	$+1.49 \\ -1.63$	$+0.48 \\ -0.60$	270	12.74	$^{+0.83}_{-0.91}$	$+0.33 \\ -0.39$
		41.70	$+3.47 \\ -3.75$	$+0.97 \\ -1.25$	210	18.82	$+1.34 \\ -1.47$	$+0.45 \\ -0.55$	280	12.17	$^{+0.78}_{-0.86}$	$^{+0.33}_{-0.38}$
	150	36.95	$+3.02 \\ -3.24$	$+0.85 \\ -1.10$	220	17.38	$+1.22 \\ -1.33$	$+0.42 \\ -0.51$	290	11.71	$^{+0.74}_{-0.82}$	$+0.32 \\ -0.37$
TH uncertainties		32.59	$^{+2.60}_{-2.79}$	$+0.73 \\ -0.97$	230	16.15	$+1.11 \\ -1.22$	$+0.39 \\ -0.48$	300	11.34	$^{+0.71}_{-0.78}$	$+0.32 \\ -0.36$

• Scale dependence ± 10 to $\pm 7\%$

 $\mu_{F,R} = \chi_{F,R} M_H$ $0.5 \le \chi_{F,R} \le 2$ $0.5 \le \frac{\chi_F}{\chi_R} \le 2$

• 'PDF uncertainty' $\pm 3\%$

• 'EW uncertainty' : partial vs complete factorization -3 to +1%

LHC

$2003 \rightarrow 2009$		σ^{best}	Scale	PDF	m_H	$\sigma^{ m best}$	Scale	PDF	m_H	σ^{best}	Scale	PDF
		74.58	$+7.18 \\ -7.54$	+1.86 -2.45	170	28.46	$+2.22 \\ -2.39$	$+0.65 \\ -0.84$	240	15.10	$^{+1.03}_{-1.12}$	$+0.37 \\ -0.45$
$m_H = 115 \text{GeV} + 30\%$	110	63.29	$+5.87 \\ -6.20$	+1.54 -2.02	180	25.32	$^{+1.92}_{-2.08}$	$+0.58 \\ -0.74$	250	14.19	$^{+0.95}_{-1.04}$	$^{+0.36}_{-0.43}$
$m_H = 300 \text{GeV} + 9\%$	120	54.48	$+4.88 \\ -5.18$	$+1.30 \\ -1.70$	190	22.63	$+1.68 \\ -1.83$	$+0.52 \\ -0.66$	260	13.41	$+0.88 \\ -0.97$	$+0.35 \\ -0.41$
mostly add and coupling	130	47.44	$+4.12 \\ -4.38$	+1.12 -1.45	200	20.52	$+1.49 \\ -1.63$	$+0.48 \\ -0.60$	270	12.74	$+0.83 \\ -0.91$	$+0.33 \\ -0.39$
mosuy put and coupling	140	41.70	$+3.47 \\ -3.75$	$+0.97 \\ -1.25$	210	18.82	$+1.34 \\ -1.47$	$+0.45 \\ -0.55$	280	12.17	$+0.78 \\ -0.86$	$^{+0.33}_{-0.38}$
	150	36.95	$+3.02 \\ -3.24$	$+0.85 \\ -1.10$	220	17.38	$+1.22 \\ -1.33$	$+0.42 \\ -0.51$	290	11.71	$+0.74 \\ -0.82$	$^{+0.32}_{-0.37}$
TH uncertainties	160	32.59	$+2.60 \\ -2.79$	$+0.73 \\ -0.97$	230	16.15	$+1.11 \\ -1.22$	$+0.39 \\ -0.48$	300	11.34	$+0.71 \\ -0.78$	$+0.32 \\ -0.36$
• Scale dependence ± 10 to $\pm 7\%$ $\mu_{F,R} = \chi_{F,R} M_H$ $0.5 \le \chi_{F,R} \le 2$ $0.5 \le \frac{\chi_F}{\chi_R} \le 2$	6											

• 'PDF uncertainty' $\pm 3\%$

• 'EW uncertainty' : partial vs complete factorization -3 to +1%

Real PDF uncertainty might exceed 'error' bands

- ✓ from 2002 to 2008 many changes (NNLO kernels)
- but check from 2006 to 2008

Real PDF uncertainty might exceed 'error' bands

✓ from 2002 to 2008 many changes (NNLO kernels)

but check from 2006 to 2008

Real PDF uncertainty might exceed 'error' bands

✓ from 2002 to 2008 many changes (NNLO kernels)

but check from 2006 to 2008

Real PDF uncertainty might exceed 'error' bands

✓ from 2002 to 2008 many changes (NNLO kernels)

but check from 2006 to 2008

• Tevatron $\Delta \lesssim 2.5\%$

Summary

- Resummation provides a way to improve the calculation for Higgs cross-section
- NNLL+NNLO precision for gluon fusion
- Update: EW corrections, new pdfs, bottom@NLO
- Update: significant modifications at the LHC
- Update: non-negligible change at Tevatron
- Uncertainties : take into account for Higgs mass limits

~ 10% from scale dependence

pdf uncertainty not trivial ! α_s ?