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Outhine

Conjecture for all-order form of IR singularities in

massless, non-abelian gauge theory amplitudes:
see talk by T. Becher

can be absorbed into multiplicative Z ftactor,
governed by anomalous dimension I

I' involves only two-parton correlations

Will discuss constraints on I' from non-abelian
exponentiation, soft-collinear factorization, and
collinear limits

Diagrammatic analysis to 3 loops, and exclusion of
higher Casimir invariants at 4 loops

Extension to massive partons (at 2 loops)



Reminder: Conjecture for I
All-order form:

anom. dimensions,
color charges

known to three-loop order
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SCET decoupling transtormation implies:

trivial color structure
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M; dependence must cancel!

follows that I' and I's have same color structure



Reminder: Conjecture for I

SCET decoupling transformation removes soft

interactions among collinear fields and absorbs
them 1nto soft Wilson lines

n; ~ pi 1ight—1ike reference vector
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I's 1s anomalous dimension of n-jet \/

Wilson-line operator:

S({n}, 1) = (0[81(0) ... 5,(0)|0) = exp(S({n}, n))




Non-abelhian exponentiation
Gatheral 1983; Frenkel and Taylor 1984

Purely virtual amplitudes in eikonal (i.e.,
soft-gluon) approximation can be written as
exponentials of simpler quantities, which

receive contributions only from Feynman
diagrams whose color weights are “color-

connected” (or “maximally non-abelian”)

Color-weight graphs associated with each

Feynman diagram can be simplified using the
Lie commutator relation:
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Non-abelhian exponentiation

Any color-weight graph can be decomposed
into a sum over products of connected webs,
defined as a connected set of gluon lines (not

counting crossed lines as being connected)

e RERRERI

single connected web
o . . »
maximally nonabelian

Only color structures consisting of a single
connected web contribute to the exponent S



Renormalization of Wilson loops

Wilson loops containing singular points (cusps

or cross points) require UV subtractions
Polyakov 1980; Brandt, Neri, Sato 1981

For single cusp formed by tangent vectors ni

and n», renormalization factor depends on
1 * N9

cusp angle P12 defined as cosh 81 =

=
Lsllo
More generally, sets of related Wilson loops

mix under renormalization, with Z, matrix
depending on all relevant cusp angles
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Laght-like Wilson lines

For large values of cusp angle 312, anomalous
dimension associated with a cusp or cross

point grows linearly with P12, which is then

approximately equal to In(2n;- ny/ \/ i)
Korchemsky, Radyushkin 1987
Cusp angle diverges when one or both

segments approach the light-cone:
2 2

Dot H
F(ﬁlg) =k (Oés) ] B

n
cusp 9
AS
Korchemskaya, Korchemsky 1992
Presence of single logarithm characteristic for

Sudakov problems (double logs)




Laght-like Wilson lines

In SCET, this feature has been found for 2-jet

f k d l . Manohar 2003
Operators ) quar S dInl g uons. Becher, MN 2006

,U2 Ahrens, Becher, MIN, Yang 2008

cusp

Appearance of logarithms of hard scale 1s
perplexing, but can be understood based on

scale correlation 2 ~ un ps, which implies: =
% 2 v
In Iu_Z = Iu_2 — I Iu_2 collinear
luh Mc /LS ¢
For such a rewriting to be possible, the soft

al s

anomalous dimension must depend single-
logarithmically on momenta



Laght-like Wilson lines

Introducing IR regulators p;?#0 to define the
soft and collinear scales, we obtain:
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B;; =In —Sij b° hard log =
s = 2 i 2
( p’L )( pj) collinear 7Y
ft 1 2 :
SOIT 10g e —n ,LL_2 e

collinear log



Soft anomalous-dimension matrix

Decompositions:
L({p}, ) =Ts({B}, 1) + Z (L, 1)

FZ(LZ) = _Ff:usp(&s) LZ s /YZ:(CVS)

Key equation: ol e e A O
z
MDA 1y
O L cusp |
e

Enforces linearlty in cusp angles [; (with one
exception, see below) and significantly
restricts color structures



Soft anomalous-dimension matrix

Only exception would be a more complicated

dependence on conformal cross ratios, which
are independent of collinear scales:

(—8ij) (—5k)
(—sik) (—551)

Gardi, Magnea 2009
Any polynomial dependence on such ratios

e

can be excluded using arguments based on
consistency with collinear limits



Consistency with collinear limits

When two partons become collinear, an n-point
amplitude M, reduces to an (n-1)-parton amplitude

times a Sphttlng function: Berends, Giele 1989; Mangano, Parke 1991
Kosower 1999; Catani, de Florian, Rodrigo 2003

M, ({p1, 02,03, - - -, Pn})) = SP{P1,P2}) Mu—1({ P, D3, - s0n})) + .. 1

FSP({plap2}a :u) — F({plv e 7pn}7 :u) - F({P7 p3 .- ’p”}’ 'LL)‘TP—>T1—|—T2 |
— ______—J

I's, must be independent of momenta and colors of
Becher, MIN 2009

Partons:d; <. -n



Consistency with collinear limits

The form we propose 1s consistent with
factorization in the collinear limit:

FSP({plap2}7 ILL) = F({pla S 7pn}7 M) — F({P7 p3... 7p72}7 M)‘TP*T1+T2
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B S ) —r ol kpln =S Tn- (T +T) Inz+ T - (T + T3) In(1 — z)]

— T T

o 71 =l 72 — ’yp : momentum fractions of partons 1, 2 |

But this would not work if I' would involve
terms of higher powers in color generators T;

or momentum variables

A strong, new constraint!



Diagrammatic analysis of the soft

anomalous-dimension matrix



Order-by-order analysis

One loop (recall > | 7. 1,=--> 17 =->" )

(4,7) ’ t

one leg: T? = C, =
two legs: T, T,
Two loops
one leg; _j fabe o T e — C/;CZ-
two legs: R T = % T, T, (only new structure)

l\/\/\O\/\/\Q
three legsz e T

=> vanishes, since no antisymmetric momentum
structure 1n 1,},k consistent with soft-collinear

explains cancellations observed in:

factorization exists!
Mert Aybat, Dixon, Sterman 2006; Dixon 2009



Three-loop order

= B

(only new structure)

Six new structures consistent with non-abelhian
exponentiation exist, two of which are
compatible with soft-collinear tactorization:

AI‘?)({]_?}?,U) v _fl(zfs) Z fadefbce 1-;@ 1—;b ch Tld Ty (_S’ij)(_skl)

— (=5 )(=551)
—HES PEPR T T \
(4,7:k) more generally, arbitrary odd

function of conformal cross ratio



Three-loop order

Neither of these 1s compatible with collinear

limits: the sphitting function would depend on
colors and momenta of the additional partons

Consider, e.g., the second term:

ATs,({p1, 2}, )] o, = 225 1% [ (R ST (I T T (T Tﬂ)+]
i) T

2
A s e e e T B A T AT T R _“S”+
A L

=

dependence on color invariants and
momenta of additional partons (1#1,2)




Four-loops and beyond

Interesting new webs involving higher Casimir

invariants first arise at four loops

d%de 1’;& Tyb ch CI}d = d%bcd (1‘;& 1’}1) ch CZ'vld) :
deo-an — [ (TS TS .. T, ]
One linear combination of such terms would

be compatible with soft-collinear factorization,
but does not have the correct collinear limit



Casimir scaling

Applied to the two-jet case (form factors), our

formula thus implies Casimir scaling of the
cusp anomalous dimension:

/
Fgusp ( ) Fgusp ( ) |

CF CA — /Ycusp(@s) i
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CheCked eXpliCitly at three lOOPS Moch, Vermaseren, Vogt 2004

But contradicts expectations from AdS/CFT
correspondence (high-spin operators in

strong-coupling limit) Armoni 2006
Alday, Maldacena 2007

Presumably not a real conflict ...



Wanted: 3- and 4-loop checks

Full three-loop 4-jet amplitudes in N=4 super

Yang-Mills theory were expressed in terms of
small number of scalar integrals Bern et al, 2008

Once these can be calculated, this will prowvide
stringent test of our arguments (note recent

calculation of three-loop form-factor integrals)
Baikov et al. 2009;
Heinrich, Huber, Kosower, Smirnov 2009

Calculation of four-loop cusp anomalous
dimension would provide non-trivial test of
Casimir scaling, which 1s then no longer

guaranteed by non-abelian exponentiation






Processes with heavy particles

Have extended our analysis to amplitudes
which include massive partons  Becher, MN, arxiv:0904.1021

Effective theory 1s combination of HOET (for
heavy partons) and SCET (massless partons)

Soft function contains both massless and
timelike Wilson lines:

St wup u) = (0[S, - .. Sny Svpry -+ - 80, |0)
vi are 4-velocities of the massive partons

n; are light-light reference vectors



Processes with heavy particles

Both the tull and the effective theory know

about the 4-velocities of the massive partons

Therefore much weaker constraints hold for
the massive case:

no soft-collinear factorization
no constraint from (quasi-)collinear limits

For the purely massive case, all structures
allowed by non-abelian exponentiation at a
given order will be present!



Anomalous dimension to two loops

One- and two-parton terms:

I‘({]_?}7 {m}7 'u) ‘Z—parton

B .
massless partons — Z 7 e e e B ) = - Z v ()
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Generalizes structure found fOI‘ massless case

Reproduces IR poles of QCD amplitudes after

appropriate matching of coupling constants



Anomalous dimension to two loops

New ingredients Yeusp(817, @s) and v (as) can be
extracted from known results for heavy-heavy
and heavy-light form factors

In particular:

G

Qg 2 2
Yeusp (B, @) = Yousp(@s) B coth 8 + Cg (?) 242 (BeothB—1) - cothﬁ/o i corhy )

sinhQﬂ/BCw peothg —1 . sinhf it
0

8
2
2 sinh® § — sinh®  sinh ¢ ST /O dy (8 — 1) coth ¢

derived using:
Korchemsky, Radyushkin 1987, 1992

However ... MN 2004
(see also: Kidonakis 2009)



Anomalous dimension to two loops

... 1n addition also 3-parton correlations appear

in maSSleSS Case! Mitov, Sterman, Sung 2009

VJ Vg

. -l -
' VK :
U1 ) U1
. ,
’ o ’
, N .
v N ’
’ 8 1
' » '
1 0 1
f
0 . ~ d 0 .
' - ' i . Q ' o
' .
1 . % (] .
- '
' f
'
\ A}
'
\
'
A}
.
\
.
.
.
N
.
N
N

n nj

General structure [with 8r; = arccosh(vy - vy)]:
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Becher, MN 2009
both structures
vanish when two
velocities coincide

no correlations
involving a single

heavy parton



Limit of small parton masses

Particle masses then serve as IR regulators for
collinear singularities

Factorization theorems allow one to derive

massive amplitudes from massless ones
Penin 2005; Moch, Mitov 2006; Becher, Melnikov 2007

Our one- and two-parton terms are consistent
with this factorization:

Ellpk =0l =T {050

— Z [CI ’YCusp(as) In e Bz /VI(O‘S) = ,Yi(OéS)

mr

But if F; or 9 do not vanish in this imit, the

factorization theorems require modifications



Conclusions

IR divergences of arbitrary scattering amplitudes

in gauge theories can be derived from SCET

anomalous-dimension matrix I

Stringent constraints on I arise from non-abelian
exponentiation (general case), and soft-collinear
factorization & collinear limits (massless case only)

Conjectured form of pure color-dipole correlations
demonstrated to hold at 3- and (partial) 4-loop
order, assuming polynomial dependence on [3ii

In massive case, previously observed properties of
2-loop three-parton correlations understood from
symmetry properties in effective theory



