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IR singularities

On-shell parton scattering amplitudes in gauge
theories contain IR divergences from soft and
collinear loop momenta

IR singularities cancel between real and

virtual contributions Bloch, Nordsieck 1937
Kinoshita 1962; Lee, Nauenberg 1964

Nevertheless Interesting:

resummation of large Sudakov logarithms
remaining after cancellation of divergences

(relevant tor LHC physics!)

check on multi-loop calculations



IR singularities in QED

Singularities arise from soft photon emission

(for me#0); eitkonal approximation:

= : = DPu
p p=—k N"‘“(p)p-k

IR divergent part is a multiplicative factor

Higher-order terms obtained by exponentiating

leading-order SOP[ COntribUtiOn. Yennie, Frautschi, Suura 1961
Weinberg 1965



IR singularities in QCD
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“In [Yang-Mills theory] a soft photon emitted from an external
line can itself emit a pair of soft charged massless particles,
which themselves emit soft photons, and so on, building up a
cascade of soft massless particles each of which contributes an
infra-red divergence. The elimination of such complicated
interlocking infra-red divergences would certainly be a
Herculean task, and might not even be possible. ™ |

Weinberg, Phys. Rev. 140B (1965) |




IR singularities in QCD

Much more complicated

soft and collinear singularities

gluons carry color charge, hence soft
emissions do not simply exponentiate

but only a restricted set of higher-order

contributions can appear (non-abelian
exponentiation theorem) Gatheral 1983; Frenkel, Taylor 1984

For long time, explicit form of IR poles was
only understood at two-loop order  catani 1998



Overview of the talk

IR singularities of gauge theory on-shell amplitudes

can be absorbed into multiplicative Z-factor,
governed by an anomalous dimension I

conjecture: for massless theories I' involves only
two-parton color-correlations

Effective theory analysis

on-shell amplitudes as Wilson coefficients in Soft-

Collinear Effective Theory
constraints on I from soft-collinear factorization

Phenomenological application: higher-log
resummation for n-jet processes.



Matthias Neubert’s talk

Constraints on T
non-abelian exponentiation
soft-collinear factorization
collinear limits

Order-by-order analysis to three loops

Higher-Casimir terms at four loops

Amplitudes involving massive partons



Color-space formalism

Represent amplitudes as vectors in color space:
‘Cl, ot Cn> Catani, Seymour 1996

!

color index of first parton
Color generator for it" parton T |c1,ca, ..., cy)
acts like a matrix:

t* matrix for quarks, f2°¢ for gluons

product T; - T'; = Z TRAE (commutative)
° a ° °

charge conservation ) T =0 implies:

I o Y

(2,9) 2
=5 = -————---...._..J Cror Ca




Catani’s two-loop tormula (1998)

(“... beautitul, yet mysterious ...”)
Specifies IR singularities of dimensionally

regularized n-parton amplitudes at two loops:

2
s [T (O‘) 1)+ ... | [IMy(e, {p})) = finite
: amplitude 1s vector in color space
with e = T, T, [ i\
PEt e D= (& 1 ‘)%; > (—>
SRR
= - (1 (_ ) 2 (K"_ g_z) 19 (2¢) \ (pi ‘|‘pj)2
1w (10 2 2
10 (0 ) rao

Later derivation using factorization properties

and IR evolution equation for form factor
Sterman, Tejeda-Yeomans 2003



All-order generalization

IR divergences in d=4-2¢ can be absorbed into a

multiplicative factor Z (a matrix in color space),

which derives from an anomalous-dimension
TB, Neubert 2009

matrix: i

/
Ma({p} 1)) = lim Z7 (e {p}, 1) [Mue {p}) |
|

- oo g -

Z(e. () =Pew | [ L)) ]
L J :u _ }

Corresponding RG evolution equation:

dlfl,u -Maliph 1)) = Tiph #) IMaip) 1))

=> can be used to resum Sudakov logarithms



All-order generalization

Anomalous dimension 1s conjectured to be
extremely simple:

anom. dimensions,
color charges 1

known to three-loop order

v S e N
I‘({Z_?}Mu) — Z 1-;21-} Wcusp(as) In a B | Z /77;(058)

(4.5) / ’
sum OVver pairs J

1#] of partons (pi -+ Dy )2 i

simple structure, reminiscent of QED

IR poles determined by color charges and

momenta of external partons

color dipole correlations, like at one-loop order



Z factor to three loops

d-dimensional p-function

Explicit result: /

Z(Ev {B}vlu):/d(j 26—5(04)/0‘ F({B}aﬂaa)_I_/dj/ 9 —F/ﬁ(ig)/@’

0 = 0

where
9,

Elad = Oln

({p} by O‘S o f}/cusp Ofs Z C

Perturbative expansion:

1l coethic k !
T I = | - (@3)2 38, = e G : T, all coetticients known
n = e =
47T 4e2 = 2¢ 47 16¢3 1662 7 /

e (%)3 1155 Ty 560 + 861 T — 1265 T'g = I, — 6501 — 6061 o I's
47

ToeE=E 72¢€3 36¢€2 6e
=> exponentiation yields Z factor at three loops!

e,




Checks

Expression for IR pole terms agrees with all
known perturbative results:

3-loop quark and gluon form factors, which

determine the functions 77 (a;)
Moch, Vermaseren, Vogt 2005

2-100p 3 -j et qqg amphtude Garland, Gehrmann et al. 2002

. . Anastasiou, Glover et al. 2001
2'100]? 4'J et amphtudes Bene P D 007005

3-loop 4-jet amplitudes in N=4 super Yang-

Mills theory 1n planar limit Bern et al. 2005, 2007



Catani’s result

Comparison with Catani’s formula at two loops

yields explicit expression for 1/€ pole term:

2 i x I cls i 7T2
Hf({)s(e) = Z (’h = " Eﬁo Ci)
| Z‘fabc

a b e
L S ram

SR e I

In In
(5.j.%) s

Non-trivial color structure only arises since his
operators are not defined in a minimal scheme

First derived by mert Aybat, Dixon, Sterman ‘06, confirming
earlier COnjeCtur € Bern, Dixon, Kosower ‘04



Effective Theory Analysis



Misconception

Conventional thinking 1s that UV and IR

divergences are of totally different nature:

UV divergences absorbed into

renormalization of parameters of theory;
structure constrained by RG equations

IR divergences arise in unphysical
calculations; cancel between virtual A
corrections and real emissions

In fact, IR divergences can be mapped onto
UV divergences of operators 1n effective

field theory!




Soft-Collinear Eftective Theory

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002

An effective theory for processes for processes
with energetic particles.

o . MX
Expansion in ——

2F x M
Sudakov resummation a” In*" e
2 B x

| 74



Soft-Collinear Factorization

/-

2EX ~ TIrp :%V

nonperturbative!

2EX

d —H - ]35S

18



“Strategy of regions”

Beneke and Smirnov '97

A method to perform asymptotic expansions of
loop integrals.

identify momentum regions of loop
integration which lead to singularities

expand integrand in each region, integrate

boundary terms and non-singular regions
give vanishing contribution in dim. reg.

In SCET low-energy regions are represented by
difterent fields. Hard contribution 1s absorbed
into Wilson coetficient.

19



Soft-collinear factorization: » jet case
Sen 1983; Kidonakis, Oderda, Sterman 1998

Hard function H depends on

large momentum transfers s;;
between jets

Soft function § depends
M?ZM?
i

on scales AZ; =
J
Sij

Jet functions Ji = J; (M;?)



SCET for n-jet processes
n ditferent types of collinear quark and gluon

fields (— jet functions J;), interacting only via

soft fields (soft function S)

operator definitions for J; and S

Hard contributions (Q ~ Vs) are integrated out
and absorbed into Wilson coefﬁcients:

I'en
E Cn Z O Bauer, Schwartz 2006

Scale dependence == by RGE:

T 1Ca({} ) = Do D) el {2} 1)

=

anomalous-dimension matrix




On-shell parton scattering amplitudes

Hard functions C, can be obtained by setting

the jet masses to zero: jet and soft functions
become scaleless, loop corrections vanish.

renormalization factor

One ObtalnS: — (minimal subtraction of IR poles)

Co({p}, 1) = lim Z7" (¢, {p}, ) IMu(e, {p}))

TB, Neubert 2009

where r_ dln Z

dln p

IR poles of scattering amplitudes mapped onto
UV poles of n-jet SCET operators

Multiplicative subtraction, controlled by RG



Factorization constraint on I

Operator matrix elements must evolve 1n the

same way as hard matching coethcients, such
that physical observables are scale independent

Factorization of matrix element then implies

, M?M?
Crath=————

trivial color structure

e

D(siy) = Tu(A%) + Y T(MP) 1]

— R —

M; dependence must cancel!

suggests logarithmic dependence on sj; and M;?

I' and I'. must have same color structure



Decoupling of soft interactions

At leading power only a single component of

the soft gluon field interacts with each
Collinear ﬁeld n; ~ pi light-like reference vector

%ij

=0 5 i ) Xz(f\U)

collinear quark field in (th direction

Can decoupled by field redefinition
iz =Sz )% =)

0
O = a3D <zg/ dtn; - AS(x + tn;) t“)



Soft function §

SCET decoupling transformation removes soft
interactions from Lagrangian. The soft Wilson
lines appear in the operators.

For n-jet operator one gets:

S({n}, u) = (0]51(0) ... 5,(0)|0)

: 0 i
S; =Pexp ig/ dtn; - Ag(tn;) T

Sal2Xe)




Perturbative results for S

Our conjecture implies for the soft anomalous-

2
° ° o _S . .
dimension matrix: Bi; =In —2 2

/ M? Mj2
I‘s({ﬁ}a ,U) = Z 9 f)/cusp(&s) 675]' == Z 75(058)
(i,9) g

This form was obtained at two loops by
showing that diagrams connecting three

parton legs vanish
Mert Aybat, Dixon, Sterman 2006

Also holds for
three-loop fermionic

contributions
Dixon 2009




Analysis of Sterman and Tejeda-Yeomans ‘03

Based on factorization

M) = Ji(as, €) S(as, €) [hy(as))
e

ol ol i
Define jet-function as square root of form
tactor Jy(as, ) = [F(Q)]"/3
Structure of IR divergences governed by §

Same physical picture, but rather different
definition of hard, jet and soft functions

In SCET |M,,) 1s purely hard, since it only

depends on hard scales.






Sudakov resummation with SCET

Many collider physics applications of SCET in
the past few years. Resummations up to N°LL,
however only for two jet observables, e.g.

Drell-Yan rapidity dist. TB, Neubert, Xu ‘07

? 1 . H- d t- Idilbi, Ji, Ma and Yuan ‘06 ;
Inciusive lggs pI’O uction Ahrens, TB, Neubert, Yang ‘08

thrust distribution 1n e¢*te~  TB, Schwartz 08

Our result for anomalous dimension I allows
us to perform higher-log resummations also for
n-jet processes



2-jet example: thrust 7°

>, [pi 0 e | M2

T = max

n ) |pi - Q?

Prediction for event-shape variable thrust dominated by

perturbative uncertainty. NLO Ellis et al. ‘81, NNLO
corrections Gehrmann et al. ‘07.

Traditional methods allowed resummation to NI Catani
et al. ‘93 but not beyond.

Using factorization theorem in SCET we were able to derive
NNNLL r esummed diStI‘iblltiOI’l TB and Schwartz, ‘08.

Need only existing perturbative input. Analytic result, no

unphysical Landau-pole singularities. Match to NNLO.

Observe dramatic improvement of convergence.



Higgs production pp — H+X

Factorization theorem for partonic cross section
near threshold z = m%,/5 — 1

Opars = Ce(my, p?) H(mg, p?) S(mi (1 — 2)%, u?)

Can solve RG equations for the ditferent parts:
this resums log’s of scale ratios.

equivalent to soft-gluon resummation

Soft scale 1s set dynamically via the fall-off of
the PDF. For my= 120 GeV,

weilght function

1
Do / G 1°50part (z)  not strongly peaked
0 near z=1



- MRST2002

- NNLO 1 NNLL
| Tevatron
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Catani, de Florian, Grazzini, Nason '03

Soft scale 1s ~ my/2, not much lower than hard scale.
No large soft logarithms.

however, the threshold region 1s numerically

large, gives ~ 90% of NLO and NNLO

correction

Even after resummation of log’s, higher order
corrections are very large.



Origin of the large corrections
Ahrens, TB, Neubert, Yang '08; — talk by [.1 Lin Yang at Pheno

Hard function gets large higher order

corrections :
- }: Ej;z': =
S = = = e i = i s

o SR DA o O

The space-like form factor has well behaved
expansion:

i e

use RG to evolve back to u? = +m?

35



Resummation by RG evolution

Evaluate each part at its characteristic scale,
evolve to common scale:

2 2 2
(A Ct T

; ( t) M ) Parton luminosity
mH"

2 - l

34



Numerical results

90 e N — : 90 N — :
80 Vs =14 TeV E 80 Vs = 14 TeV
70 _ resummed

MSTW2008NLO  fixed order 70
] 60 |
50 |
40
30
20 |

" . MSTW2008NLO

60
50
40
30
20 |
10 F

MSTW2008NNLO

o (pb)
o (pb)

MSTW2008NNLO -

MSTW2008L

MSTW2008LO -

Includes soft-gluon resummation, but the main effect
arises from scale setting u* = —m?% in hard function.

RG improved NNLO result 1s 8% larger than
fixed order (13% at Tevatron).



NKLL for r-jet processes

The necessary ingredients are

hard functions: from fixed-order results for on-
shell amplitudes. New unitarity methods allow
calculation of one-loop amplitudes with many

legs (— NNLL resummation)

jet function: imaginary part of two-point

function, inclusive jet function 1s known to two

loops.

soft function: matrix element of Wilson |

1nes,

one-loop calculation 1s comparatively simple.

Then resum log’s of ditferent scales using RG

evolution.



Automatization

in the longer term, this will

hopetully lead to automated
higher-log resummations for

jet rates

— + goes beyond parton showers,

jet rates  which are only accurate at
LL, even after matching

predicts jets, not individual

partons



Conclusion

IR divergences of scattering amplitudes in gauge

theories can be absorbed

into multiplicative Z-factor,

derived from anomalous dimension I of operators in

SCET.

Form of I 1s severely constrained from non-abelian
exponentiation, soft-collinear factorization and
collinear mits — Matthias’ talk

we conjecture I' to have only dipole color-

correlations to all ord

ers in PT.

Are on track to perform higher-log resummation for

n-jet processes at LHC u

sing RG evolution SCET.



