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IR singularities

✦ On-shell parton scattering amplitudes in gauge 
theories contain IR divergences from soft and 
collinear loop momenta

✦ IR singularities cancel between real and 
virtual contributions

✦ Nevertheless interesting:
✦ resummation of large Sudakov logarithms 

remaining after cancellation of divergences 
(relevant for LHC physics!)

✦ check on multi-loop calculations

Bloch, Nordsieck 1937
Kinoshita 1962; Lee, Nauenberg 1964



IR singularities in QED

✦ Singularities arise from soft photon emission 
(for me≠0); eikonal approximation:

✦ IR divergent part is a multiplicative factor
✦ Higher-order terms obtained by exponentiating 

leading-order soft contribution.
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Yennie, Frautschi, Suura 1961
Weinberg 1965



IR singularities in QCD

“In [Yang-Mills theory] a soft photon emitted from an external 
line can itself emit a pair of soft charged massless particles, 
which themselves emit soft photons, and so on, building up a 
cascade of soft massless particles each of which contributes an 
infra-red divergence. The elimination of such complicated 
interlocking infra-red divergences would certainly be a 
Herculean task, and might not even be possible. ”

Weinberg,  Phys. Rev. 140B (1965)



IR singularities in QCD

✦ Much more complicated
✦ soft and collinear singularities
✦ gluons carry color charge, hence soft 

emissions do not simply exponentiate
✦ but only a restricted set of higher-order 

contributions can appear (non-abelian 
exponentiation theorem) 

✦ For long time, explicit form of IR poles was 
only understood at two-loop order

Gatheral 1983; Frenkel, Taylor 1984

Catani 1998



Overview of the talk
✦ IR singularities of gauge theory on-shell amplitudes

✦ can be absorbed into multiplicative Z-factor, 
governed by an anomalous dimension Γ

✦ conjecture: for massless theories Γ involves only 
two-parton color-correlations

✦ Effective theory analysis
✦ on-shell amplitudes as Wilson coefficients in Soft-

Collinear Effective Theory

✦ constraints on Γ from soft-collinear factorization
✦ Phenomenological application: higher-log 

resummation for n-jet processes.



Matthias Neubert’s talk

✦ Constraints on Γ 
✦ non-abelian exponentiation
✦ soft-collinear factorization
✦ collinear limits

✦ Order-by-order analysis to three loops
✦ Higher-Casimir terms at four loops
✦ Amplitudes involving massive partons 



Color-space formalism
✦ Represent amplitudes as vectors in color space:

✦ Color generator for ith parton                        
acts like a matrix:  

✦ ta matrix for quarks, fabc for gluons

✦ product                                   (commutative)

✦ charge conservation                     implies:  

|c1, c2, . . . , cn〉 Catani, Seymour 1996

color index of first parton

T a
i |c1, c2, . . . , cn〉

the generalized expression

dαs

d lnµ
= β(αs, ε) = β(αs) − 2ε αs (8)

for the β-function in d = 4 − 2ε dimensions, where αs ≡ αs(µ) is the renormalized coupling
constant. The simple form of (7) implies that the matrix structure of the anomalous dimension
is the same at all scales, i.e., [Γ({p}, µ1),Γ({p}, µ2)] = 0. The path-ordering symbol can
thus be dropped in (6), and we can directly obtain an expression for the logarithm of the
renormalization factor. Writing Γ({p}, µ, αs(µ)) instead of Γ({p}, µ) to distinguish the explicit
scale dependence from the implicit one induced via the running coupling, we obtain

ln Z(ε, {p}, µ) =

αs∫

0

dα

α

1

2ε − β(α)/α

[

Γ({p}, µ, α) +

α∫

0

dα′

α′

Γ′(α′)

2ε − β(α′)/α′

]

, (9)

where αs ≡ αs(µ), and we have defined

Γ′(αs) ≡
∂

∂ ln µ
Γ({p}, µ, αs) = −γcusp(αs)

∑

i

Ci . (10)

Note that this is a momentum-independent function, which is diagonal in color space. We
have used that, when acting on color-singlet states, the unweighted sum over color generators
can be simplified, because relation (3) implies that

∑

(i,j)

Ti · Tj = −
∑

i

T
2
i = −

∑

i

Ci . (11)

Since the scattering amplitudes are color conserving, this relation can be used in our case.
Note that a different but equivalent form of relation (9) has been given in [3].

It is understood that the result (9) must be expanded in powers of αs with ε treated as a
fixed O(α0

s) quantity. Up to three-loop order this yields

ln Z =
αs

4π

(
Γ′

0

4ε2
+

Γ0

2ε

)
+

(αs

4π

)2
[
−3β0Γ′

0

16ε3
+

Γ′
1 − 4β0Γ0

16ε2
+

Γ1

4ε

]
(12)

+
(αs

4π

)3
[

11β2
0 Γ′

0

72ε4
− 5β0Γ′

1 + 8β1Γ′
0 − 12β2

0 Γ0

72ε3
+

Γ′
2 − 6β0Γ1 − 6β1Γ0

36ε2
+

Γ2

6ε

]

+ O(α4
s),

where we have expanded the anomalous dimensions and β-function as

Γ =
∞∑

n=0

Γn

(αs

4π

)n+1
, Γ′ =

∞∑

n=0

Γ′
n

(αs

4π

)n+1
, β = −2αs

∞∑

n=0

βn

(αs

4π

)n+1
. (13)

Exponentiating the result (12) and taking into account that the different expansion coefficients
Γn commute, it is straightforward to derive an explicit expression for Z. For the convenience
of the reader, we present the result along with the relevant expansion coefficients of the
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CF or CAi≠j

T i · T j =
∑

a

T a
i T a

j
∑

i

T a
i = 0



✦ Specifies IR singularities of dimensionally 
regularized n-parton amplitudes at two loops:

✦ Later derivation using factorization properties 
and IR evolution equation for form factor

Catani’s two-loop formula (1998)

Sterman, Tejeda-Yeomans 2003

with

unspecified

I(1)(ε) =
eεγE

Γ(1− ε)

∑

i

(
1
ε2

+
gi

T 2
i

1
ε

)∑

j !=i

T i · T j

2

(
µ2

−sij

)ε

I(2)(ε) =
e−εγE Γ(1− 2ε)

Γ(1− ε)

(
K +

β0

2ε

)
I(1)(2ε)

− 1
2

I(1)(ε)
(

I(1)(ε) +
β0

ε

)
+ H(2)

R.S.(ε)

[
1− αs

2π
I(1)(ε)−

(αs

2π

)2
I(2)(ε) + . . .

]
|Mn(ε, {p})〉 = finite

amplitude is vector in color space

(pi + pj)2

(“... beautiful, yet mysterious ...”)



All-order generalization
✦ IR divergences in d=4-2ε can be absorbed into a 

multiplicative factor Z (a matrix in color space), 
which derives from an anomalous-dimension 
matrix:

✦ Corresponding RG evolution equation: 

 ⇒ can be used to resum Sudakov logarithms

2 IR factorization and RG invariance

The key observation of our letter [3] was that the IR singularities of on-shell amplitudes in
massless QCD are in one-to-one correspondence to the UV poles of operator matrix elements
in SCET. These poles can therefore be subtracted by means of a multiplicative renormaliza-
tion factor Z, which is a matrix in color space. Specifically, we have shown that the finite
remainders of the scattering amplitudes can be obtained from the IR divergent, dimensionally
regularized amplitudes via the relation

|Mn({p}, µ)〉 = lim
ε→0

Z
−1(ε, {p}, µ) |Mn(ε, {p})〉 . (1)

Here {p} ≡ {p1, . . . , pn} represents the set of the momentum vectors of the n partons, and
µ denotes the factorization scale. The quantity |Mn(ε, {p})〉 on the right-hand side is a
UV-renormalized, on-shell n-parton scattering amplitude with IR singularities regularized in
d = 4 − 2ε dimensions. After coupling constant renormalization, these amplitudes are UV
finite. Apart from trivial spinor factors and polarization vectors for the external particles, the
minimally subtracted scattering amplitudes |Mn({p}, µ)〉 on the left-hand side of (1) coincide
with Wilson coefficients of n-jet operators in SCET [3], to be defined later:

|Mn({p}, µ)〉 = |Cn({p}, µ)〉 × [on-shell spinors and polarization vectors] . (2)

We postpone a more detailed discussion of the effective theory to Section 3 and proceed to
study the implications of this observation.

To analyze the general case of an arbitrary n-parton amplitude, it is convenient to use the
color-space formalism of [21, 22], in which amplitudes are treated as n-dimensional vectors
in color space. Ti is the color generator associated with the i-th parton in the scattering
amplitude, which acts as an SU(Nc) matrix on the color indices of that parton. Specifically,
one assigns (T a

i )αβ = taαβ for a final-state quark or initial-state anti-quark, (T a
i )αβ = −taβα for

a final-state anti-quark or initial-state quark, and (T a
i )bc = −ifabc for a gluon. We also use

the notation Ti · Tj ≡ T a
i T a

j summed over a. Generators associated with different particles
trivially commute, Ti · Tj = Tj · Ti for i %= j, while T 2

i = Ci is given in terms of the quadratic
Casimir operator of the corresponding color representation, i.e., Cq = Cq̄ = CF for quarks or
anti-quarks and Cg = CA for gluons. Because they conserve color, the scattering amplitudes
fulfill the relation ∑

i

T
a
i |Mn(ε, {p})〉 = 0 . (3)

It follows from (1) that the minimally subtracted scattering amplitudes satisfy the RG
equation

d

d lnµ
|Mn({p}, µ)〉 = Γ({p}, µ) |Mn({p}, µ)〉 , (4)

where the anomalous dimension is related to the Z-factor by

Γ({p}, µ) = −Z
−1(ε, {p}, µ)

d

d ln µ
Z(ε, {p}, µ) . (5)
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The formal solution to this equation can be written in the form

Z(ε, {p}, µ) = P exp

[∫ ∞

µ

dµ′

µ′ Γ({p}, µ′)

]
, (6)

where the path-ordering symbol P means that matrices are ordered from left to right according
to decreasing values of µ′. The upper integration value follows from asymptotic freedom and
the fact that Z = 1 + O(αs).

In the Section 4, we will discuss theoretical arguments supporting an all-order conjecture
for the anomalous-dimension matrix presented in [3], which states that it has the simple form

Γ({p}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij

+
∑

i

γi(αs) , (7)

where sij ≡ 2σij pi · pj + i0, and the sign factor σij = +1 if the momenta pi and pj are both
incoming or outgoing, and σij = −1 otherwise. Here and below the sums run over the n
external partons. The notation (i1, ..., ik) refers to unordered tuples of distinct parton indices.
Our result features only pairwise correlations among the color charges and momenta of different
partons. These are the familiar color-dipole correlations arising already at one-loop order from
a single soft gluon exchange. The fact that higher-order quantum effects do not induce more
complicated structures and multi-particle correlations indicates a semi-classical origin of IR
singularities. Besides wave-function-renormalization-type subtractions accomplished by the
single-particle terms γi, the only quantum aspect appearing in (7) is a universal anomalous-
dimension function γcusp related to the cusp anomalous dimension of Wilson loops with light-
like segments [23–25]. The three anomalous-dimension functions entering our result are defined
by relation (7). They can be extracted from the known IR divergences of the on-shell quark
and gluon form factors, which have been calculated to three-loop order [26–28]. The explicit
three-loop expressions are given in Appendix A.

Concerning the form of (7), we note that a conjecture that an analogous expression for
the soft anomalous-dimension matrix (see Section 4.4 below) might hold to all orders was
mentioned in passing in the introduction of [12], without presenting any supporting arguments.
In a very recent paper, Gardi and Magnea have analyzed the soft anomalous-dimension matrix
in more detail and found that (7) is the simplest solution to a set of constraints they have
derived [29]. However, they concluded that the most general solution could be considerably
more complicated. Indeed, we emphasize that as a consequence of our result some amazing
cancellations must occur in multi-loop calculations of scattering amplitudes. At L-loop order
Feynman diagrams can involve up to 2L parton legs, while the most non-trivial graphs without
subdivergences can still connect (L+1) partons. We predict that these complicated diagrams
can be decomposed into two-particle terms, whose color and momentum structure resembles
that of one-loop diagrams. At two-loop order, these cancellations were found by explicit
calculation in [30, 31]. More recently, the analysis was extended to the subclass of three-
loop graphs containing fermion loops [32]. In Section 6.2 we will present a simple symmetry
argument explaining these results.

To derive the perturbative expansion of the Z-factor from the formal solution (6) we use

6
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All-order generalization
✦ Anomalous dimension is conjectured to be 

extremely simple:

✦ simple structure, reminiscent of QED
✦ IR poles determined by color charges and 

momenta of external partons 
✦ color dipole correlations, like at one-loop order

The formal solution to this equation can be written in the form

Z(ε, {p}, µ) = P exp

[∫ ∞

µ

dµ′

µ′ Γ({p}, µ′)

]
, (6)

where the path-ordering symbol P means that matrices are ordered from left to right according
to decreasing values of µ′. The upper integration value follows from asymptotic freedom and
the fact that Z = 1 + O(αs).

In the Section 4, we will discuss theoretical arguments supporting an all-order conjecture
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singularities. Besides wave-function-renormalization-type subtractions accomplished by the
single-particle terms γi, the only quantum aspect appearing in (7) is a universal anomalous-
dimension function γcusp related to the cusp anomalous dimension of Wilson loops with light-
like segments [23–25]. The three anomalous-dimension functions entering our result are defined
by relation (7). They can be extracted from the known IR divergences of the on-shell quark
and gluon form factors, which have been calculated to three-loop order [26–28]. The explicit
three-loop expressions are given in Appendix A.

Concerning the form of (7), we note that a conjecture that an analogous expression for
the soft anomalous-dimension matrix (see Section 4.4 below) might hold to all orders was
mentioned in passing in the introduction of [12], without presenting any supporting arguments.
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more complicated. Indeed, we emphasize that as a consequence of our result some amazing
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argument explaining these results.

To derive the perturbative expansion of the Z-factor from the formal solution (6) we use
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sum over pairs
i≠j of partons

color charges
anom. dimensions, 

known to three-loop order 

(pi + pj)2



Z factor to three loops

✦ Explicit result:

✦ Perturbative expansion:

lnZ =
αs

4π

(
Γ′

0

4ε2
+

Γ0

2ε

)
+

(αs

4π

)2
[
−3β0Γ′

0

16ε3
+

Γ′
1 − 4β0Γ0

16ε2
+

Γ1

4ε

]

+
(αs

4π

)3
[

11β2
0 Γ′

0

72ε4
− 5β0Γ′

1 + 8β1Γ′
0 − 12β2

0 Γ0

72ε3
+

Γ′
2 − 6β0Γ1 − 6β1Γ0

36ε2
+

Γ2

6ε

]
+ . . .

d-dimensional β-function

where

⇒ exponentiation yields Z factor at three loops!

all coefficients known!

the generalized expression

dαs

d lnµ
= β(αs, ε) = β(αs) − 2ε αs (8)

for the β-function in d = 4 − 2ε dimensions, where αs ≡ αs(µ) is the renormalized coupling
constant. The simple form of (7) implies that the matrix structure of the anomalous dimension
is the same at all scales, i.e., [Γ({p}, µ1),Γ({p}, µ2)] = 0. The path-ordering symbol can
thus be dropped in (6), and we can directly obtain an expression for the logarithm of the
renormalization factor. Writing Γ({p}, µ, αs(µ)) instead of Γ({p}, µ) to distinguish the explicit
scale dependence from the implicit one induced via the running coupling, we obtain

ln Z(ε, {p}, µ) =

αs∫

0

dα

α

1

2ε − β(α)/α

[

Γ({p}, µ, α) +

α∫

0

dα′

α′

Γ′(α′)

2ε − β(α′)/α′

]

, (9)

where αs ≡ αs(µ), and we have defined

Γ′(αs) ≡
∂

∂ ln µ
Γ({p}, µ, αs) = −γcusp(αs)

∑

i

Ci . (10)

Note that this is a momentum-independent function, which is diagonal in color space. We
have used that, when acting on color-singlet states, the unweighted sum over color generators
can be simplified, because relation (3) implies that

∑

(i,j)

Ti · Tj = −
∑

i

T
2
i = −

∑

i

Ci . (11)

Since the scattering amplitudes are color conserving, this relation can be used in our case.
Note that a different but equivalent form of relation (9) has been given in [3].

It is understood that the result (9) must be expanded in powers of αs with ε treated as a
fixed O(α0

s) quantity. Up to three-loop order this yields

ln Z =
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+
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+
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+

Γ1
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− 5β0Γ′
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0 − 12β2
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72ε3
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2 − 6β0Γ1 − 6β1Γ0
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+

Γ2

6ε

]

+ O(α4
s),

where we have expanded the anomalous dimensions and β-function as

Γ =
∞∑

n=0

Γn

(αs

4π

)n+1
, Γ′ =

∞∑

n=0

Γ′
n

(αs

4π

)n+1
, β = −2αs

∞∑

n=0

βn

(αs

4π

)n+1
. (13)

Exponentiating the result (12) and taking into account that the different expansion coefficients
Γn commute, it is straightforward to derive an explicit expression for Z. For the convenience
of the reader, we present the result along with the relevant expansion coefficients of the
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Checks
✦ Expression for IR pole terms agrees with all 

known perturbative results:
✦ 3-loop quark and gluon form factors, which 

determine the functions
✦ 2-loop 3-jet qqg amplitude
✦ 2-loop 4-jet amplitudes
✦ 3-loop 4-jet amplitudes in N=4 super Yang-

Mills theory in planar limit

Moch, Vermaseren, Vogt  2005

Garland, Gehrmann et al. 2002

Anastasiou, Glover et al. 2001 
Bern, De Freitas, Dixon 2002, 2003

Bern et al. 2005, 2007

γq,g(αs)



Catani’s result

✦ Comparison with Catani’s formula at two loops 
yields explicit expression for 1/ε pole term:

✦ Non-trivial color structure only arises since his 
operators are not defined in a minimal scheme

✦ First derived by Mert Aybat, Dixon, Sterman ‘06 , confirming 
earlier conjecture Bern, Dixon, Kosower ‘04 

anomalous dimensions in Appendix A. Note that the highest pole in the O(αn
s ) term of lnZ

is 1/εn+1, instead of 1/ε2n for the Z-factor itself. The exponentiation of the higher pole terms
was observed previously in [33].

The IR singularities of two-loop scattering amplitudes were first predicted by Catani a
decade ago [20]. The one- and two-loop coefficients of our Z-matrix are closely related to his
subtraction operators I(1) and I(2). Catani’s formula states that the product

[
1 − αs

2π
I

(1)(ε) −
(αs

2π

)2
I

(2)(ε) + . . .

]
|Mn(ε, {p})〉 (14)

is free of IR poles through O(α2
s). The subtraction operators I(n)(ε) ≡ I(n)(ε, {p}, µ) are

defined as

I
(1)(ε) =

eεγE

Γ(1 − ε)

∑

i

(
1

ε2
− γi

0

2ε

1

T 2
i

)∑

j !=i

Ti · Tj

2

(
µ2

−sij

)ε

,

I
(2)(ε) =

e−εγE Γ(1 − 2ε)

Γ(1 − ε)

(
γcusp

1

8
+

β0

2ε

)
I

(1)(2ε) − 1

2
I

(1)(ε)

(
I

(1)(ε) +
β0

ε

)
+ H

(2)
R.S.(ε) .

(15)

The conditions linking these objects to ours are

2I(1) !
= Z1 + finite , 4I(2) !

= Z2 − 2I(1)
Z1 + finite , (16)

where Zn denotes the coefficient of (αs/4π)n in the Z-factor. The first relation is indeed

satisfied. The second one can be used to derive an explicit expression for the quantity H
(2)
R.S.

encoding the genuine two-loop coefficient of the 1/ε pole in (15), which was not obtained in
[20]. We find

H
(2)
R.S.(ε) =

1

16ε

∑

i

(
γi

1 −
1

4
γcusp

1 γi
0 +

π2

16
β0 Ci

)

+
ifabc

24ε

∑

(i,j,k)

T
a
i T

b
j T

c
k ln

−sij

−sjk

ln
−sjk

−ski

ln
−ski

−sij

,

(17)

which apart from the last term is diagonal in color space and universal in the sense that it
is a sum over contributions from each individual parton. Note that only the first term in
this result is of a form suggested by (9). The remaining terms in the first line arise because
the two-loop corrections involving the cusp anomalous dimension or the β-function are not
implemented in an optimal way in (15). More importantly, the term in the second line of (17)
arises only because the operator I(1) in [20] is not defined in a minimal subtraction scheme,
but also includes O(εn) terms with n ≥ 0. As a result, the antisymmetric terms in the product
I(1)Z1 in the second relation in (16) contain the structure

1

16ε

∑

(i,j)

∑

(k,l)

ln
µ2

−sij

ln2 µ2

−skl

[
Ti · Tj , Tk · Tl

]
, (18)

8



Effective Theory Analysis



Misconception
✦ Conventional thinking is that UV and IR 

divergences are of totally different nature:
✦ UV divergences absorbed into 

renormalization of parameters of theory; 
structure constrained by RG equations

✦ IR divergences arise in unphysical 
calculations; cancel between virtual 
corrections and real emissions

✦ In fact, IR divergences can be mapped onto 
UV divergences of operators in effective 
field theory! IR

UV

Λ



Soft-Collinear Effective Theory

✦ An effective theory for processes for processes 
with energetic particles.

✦ Expansion in
✦ Sudakov resummation

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002

!−

ν̄

Xu

B
Vub

17

MX

2EX

αn
s ln2n

(
MX

2 EX

)



Soft-Collinear Factorization

dΓ = H · J ⊗ S

!−

ν̄

B
J

S

H

2EX ∼ mb

MX ! mD

ΛS =
M2

X

2EX
nonperturbative!

18



“Strategy of regions”
✦ A method to perform asymptotic expansions of 

loop integrals.
✦ identify momentum regions of loop 

integration which lead to singularities
✦ expand integrand in each region, integrate
✦ boundary terms and non-singular regions 

give vanishing contribution in dim. reg.
✦ In SCET low-energy regions are represented by 

different fields. Hard contribution is absorbed 
into Wilson coefficient.

19
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Soft-collinear factorization: n jet case

Jet functions Ji = Ji (Mi2)

H

J J

J J

Hard function H depends on 
large momentum transfers sij 
between jets

S

Soft function S depends 

on scales Λ2
ij =

M2
i M2

j

sij

Sen 1983; Kidonakis, Oderda, Sterman 1998



anomalous-dimension matrix

SCET for n-jet processes
✦ n different types of collinear quark and gluon 

fields (→ jet functions Ji), interacting only via 
soft fields (soft function S)
✦ operator definitions for Ji   and S

✦ Hard contributions (Q ~ √s) are integrated out 
and absorbed into Wilson coefficients:

✦ Scale dependence controlled by RGE:

Hn =
∑

i

Cn,i(µ) Oren
n,i (µ)

d

d lnµ
|Cn({p}, µ)〉 = Γ(µ, {p}) |Cn({p}, µ)〉

Bauer, Schwartz 2006



On-shell parton scattering amplitudes

✦ Hard functions Cn can be obtained by setting 
the jet masses to zero: jet and soft functions 
become scaleless, loop corrections vanish.

✦ One obtains:

✦ IR poles of scattering amplitudes mapped onto 
UV poles of n-jet SCET operators

✦ Multiplicative subtraction, controlled by RG

where 
Γ = −d lnZ

d lnµ

|Cn({p}, µ)〉 = lim
ε→0

Z−1(ε, {p}, µ) |Mn(ε, {p})〉

renormalization factor
(minimal subtraction of IR poles)

TB, Neubert 2009



Factorization constraint on Γ
✦ Operator matrix elements must evolve in the 

same way as hard matching coefficients, such 
that physical observables are scale independent

✦ Factorization of matrix element then implies 

(with                     ):

✦ suggests logarithmic dependence on sij and Mi2 

✦ Γ and Γs must have same color structure

Mi dependence must cancel!

trivial color structureΛ2
ij =

M2
i M2

j

sij

Γ(sij) = Γs(Λ2
ij) +

∑

i

Γi
c(M

2
i )1



Decoupling of soft interactions

✦ At leading power only a single component of 
the soft gluon field interacts with each 
collinear field.

✦ Can decoupled by field redefinition

ni ~ pi light-like reference vectorThe substitution (23) gives rise to an eikonal interaction of soft gluons with collinear
fermion fields,

Lci+s = χ̄i(x)
/̄ni

2
ni · As(x−) χi(x) . (25)

This interaction can be represented in terms of soft Wilson lines. Redefining the quark and
gluon fields as

χi(x) = Si(x−) χ(0)
i (x) ,

χ̄i(x) = χ̄(0)
i (x) S†

i (x−) ,

Aµ
i⊥(x) = Si(x−)Aµ

i⊥(x) S†
i (x−) ,

(26)

where

Si(x) = P exp

(
ig

∫ 0

−∞
dt ni · Aa

s(x + tni) ta
)

, (27)

eliminates the interaction Lci+s (including the pure-gluon terms). After this decoupling trans-
formation [5], soft interactions manifest themselves as Wilson lines in operators built from
collinear fields. The soft gluons do not couple to the spin of the collinear particles, and for
the discussion that follows the spin degrees of freedom will be irrelevant.

As written above the soft Wilson lines Si and S†
i are color matrices defined in the fun-

damental representation of the gauge group. The transformations (26) take on a universal
form if we define a soft Wilson line Si in analogy with (27), but with ta replaced by the color
generator T a

i in the appropriate representation for the i-th parton. Representing a generic
collinear field as (φi)αi

ai
(x) with color index ai and Dirac/Lorentz index αi, the soft interactions

can then be decoupled from this field by the redefinition

(φi)
αi
ai

(x) = [Si(x−)]aibi
(φi)

(0)αi

bi
(x) . (28)

Note that even anti-quarks transform according to this rule: in this case T a
i = −(ta)T , which

translates into the anti-path ordering in (26).
Hard interactions among the different jets are integrated out in the effective theory and

absorbed into the Wilson coefficients of operators composed out of products of collinear and
soft fields. Since additional soft fields in the SCET operators would lead to power suppression,
the leading n-jet operators are built from n collinear fields, one for each direction of large
energy flow [50, 51]. The most general such operator with given particle content appears in
the effective Hamiltonian

Heff
n =

∫
dt1 . . . dtn C̃a1...an

α1...αn
(t1, . . . , tn, µ) (φ1)

α1
a1

(x + t1n̄1) . . . (φn)αn
an

(x + tnn̄n) . (29)

Our notation is somewhat unusual, because the Wilson coefficients of these operators carry
spin and color indices. Usually both operators and Wilson coefficients are chosen to be color-
neutral Lorentz scalars. However, writing the operator in this form makes the connection to
the color-space notation we use for the scattering amplitudes most transparent. In color-space
notation, the effective Hamiltonian for an n-parton scattering process reads

Heff
n =

∫
dt1 . . . dtn 〈On({t}, µ)|C̃n({t}, µ)〉 , (30)
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Soft function S

✦ SCET decoupling transformation removes soft 
interactions from Lagrangian. The soft Wilson 
lines appear in the operators.

✦ For n-jet operator one gets:

Si = P exp
[
ig

∫ 0

−∞
dt ni · Aa(tni)T a

i

]

...

n1

n2

n3

n4

n5

nn

Figure 1: Graphical representation of the soft operator S({n}, µ) corresponding to an n-parton
scattering amplitude. The n light-like Wilson lines start at the origin and run to infinity. The
dots represent open color indices.

constrained by the simplicity of soft gluon interactions, which only probe the direction of the
Wilson lines and their color charge. When the color indices are contracted in color-singlet
combinations, then S({n}, µ) turns into products of closed Wilson loops, which touch or
intersect each other at the origin. The renormalization properties of such Wilson loops have
been studied extensively in the literature, see e.g. [8, 9, 23, 52–55] and references therein.
We will use several results obtained in these studies and generalize them to the case of the
Wilson-line operator in (32). We will also indicate where known properties of Wilson loops
correspond to certain features of the effective theory and vice versa.

For on-shell amplitudes, the loop integrals in the effective theory have both IR and UV
divergences and vanish in dimensional regularization. This makes the correspondence be-
tween the Wilson coefficients in (30) and the amplitudes manifest. However, because of these
cancellations we cannot use on-shell amplitudes to obtain the anomalous dimensions of the
SCET operators. To separate out the UV divergences we need to consider IR-finite quantities.
The simplest possibility is to consider slightly off-shell n-parton amputated Green’s functions
Gn({p}). However, in this case we encounter a subtlety. While the off-shell Green’s function
in QCD and SCET are IR finite, this is no longer the case after the field redefinition (26).
Field redefinitions leave “physical” quantities such as on-shell matrix elements unchanged,
but they can change the off-shell behavior of fields. To calculate the anomalous dimensions
perturbatively from off-shell Green’s functions, one should use the original, non-decoupled
fields.2 For the case of the quark form factor, the corresponding one-loop calculation in the
effective theory was performed in [56]. Generalizing this result to n-point functions, we find

2Alternatively, one can perform the calculations using a different IR regulator, e.g. by considering finite-
length Wilson lines with n2

i != 0 [25].

13

where µ is the scale at which the SCET operator is renormalized. An n-parton scattering
amplitude is obtained by taking an on-shell matrix element of this operator. In this step
effective-theory loop integrals vanish in dimensional regularization, because they are scale-
less. The on-shell matrix elements are therefore given by their tree-level values, consisting of
products of on-shell spinors and polarization vectors defined through the relations

〈0|(χj)
a
α(tjn̄j)|pi; ai, si〉 = δij δaia e−itin̄i·pi uα(pi, si) ,

〈0|(Aj⊥)a
µ(tjn̄j)|pi; ai, si〉 = δij δaia e−itin̄i·pi εµ(pi, si) .

(31)

Loop corrections to the scattering amplitude are encoded in the Wilson coefficients C̃n({t}, µ).
The integrations over ti in (30) produce the Fourier-transform Cn({p}, µ) of these coefficients,
which after contraction with the spinors and polarization vectors arising when taking the tree-
level matrix element is in one-to-one correspondence with the scattering amplitudes [3], as
shown in (2).

3.2 Soft-collinear factorization and decoupling

To obtain the general form of the anomalous-dimension matrix Γ defined in (4), we now derive
a factorization theorem for the matrix elements of SCET operators. The first factorization step
has already been achieved in (30), which separates hard from soft and collinear fluctuations.
In a second step, we separate the collinear and soft degrees of freedom using the decoupling
transformation (26), which eliminates the leading-power interactions among soft and collinear
fields. Since collinear fields from different sectors do not interact directly, this completely
factorizes the matrix element into a soft part S, given by a product of Wilson lines along the
directions ni, and a product of collinear matrix elements Ji for each direction.

RG invariance implies that the right-hand side of (30) must be independent of the renormal-
ization scale. Denoting by Γh ≡ Γ the anomalous-dimension matrix of the hard contributions
contained in the Wilson coefficient functions Cn and by Γc+s the anomalous dimension associ-
ated with the collinear and soft contributions contained in the matrix elements of the SCET
operators,1 it follows that Γh = Γc+s. The decoupling transformation, which removes the
interactions of collinear fields with soft gluons and absorbs them into Wilson lines [5], allows
us to further decompose Γc+s = Γc +Γs. There are no mixed soft-collinear contributions. The
collinear piece Γc =

∑
i Γ

i
c is a sum over color-singlet single-particle contributions, because the

fields belonging to different collinear sectors of SCET do not interact with one another. Hence,
contributions to the anomalous dimension involving correlations between different partons only
reside in the soft and hard contributions, Γs and Γh, and they coincide.

After the decoupling transformation the soft matrix element is a vacuum expectation value
of n light-like Wilson lines, one for each external parton and in the appropriate color repre-
sentation:

S({n}, µ) = 〈0|S1(0) . . .Sn(0)|0〉 . (32)

As illustrated in Figure 1, this object is an operator in color space, with each Si factor
operating on the color indices of the i-th parton. Its renormalization properties are strongly

1Following common practice, we define the anomalous dimensions of operators with the opposite sign
compared to those for Wilson coefficients.
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Perturbative results for S

✦ Our conjecture implies for the soft anomalous-
dimension matrix:

✦ This form was obtained at two loops by 
showing that diagrams connecting three 
parton legs vanish

✦ Also holds for                                             
three-loop fermionic                       
contributions

variables sij and Li. The dependence on the collinear scales must cancel when we combine
the soft and collinear contributions to the total anomalous-dimension matrix. We thus obtain
the relation

∂Γs({s}, {L}, µ)

∂Li

= Γi
cusp(αs) , (48)

where the expression on the right-hand side is a unit matrix in color space. This relation
provides an important constraint on the momentum and color structures that can appear in the
soft anomalous-dimension matrix. A corresponding relation has been derived independently
in [29].

Because the kinematical invariants sij can be assumed to be linearly independent, relation
(48) implies that Γs depends only linearly on the cusp angles βij , see (45). The only exception
would be a more complicated dependence on combinations of cusp angles, in which the collinear
logarithms cancel. The simplest such combination is

βijkl = βij + βkl − βik − βjl = ln
(−sij)(−skl)

(−sik)(−sjl)
, (49)

which coincides with the logarithm of the conformal cross ratio ρijkl defined in [29]. This
quantity obeys the symmetry properties

βijkl = βjilk = −βikjl = −βljki = βklij . (50)

It is easy to show that any combination of cusp angles that is independent of collinear loga-
rithms can be expressed via such cross ratios.

Our strategy in Section 6 will be to analyze the structure of the soft anomalous-dimension
matrix first, since it is constrained by the non-abelian exponentiation theorem and the con-
straint (48). The universality of soft gluon interactions implies that the soft contributions only
probe the momentum directions and color charges of the external partons, but not their po-
larization states. Dependence on the parton identities thus only enters via the cusp variables
βij and non-trivial color-conserving structures built out of Ti generators. If our conjecture (7)
is correct, then (47) implies that the soft anomalous-dimension matrix should be given by

Γs({β}, µ) = −
∑

(i,j)

Ti · Tj

2
γcusp(αs) βij +

∑

i

γi
s(αs) , (51)

where
γi(αs) = γi

c(αs) + γi
s(αs) . (52)

Using relation (11) we may indeed confirm that

∂Γs

∂Li

= −
∑

j !=i

Ti · Tj γcusp(αs) = Ci γcusp(αs) ≡ Γi
cusp(αs) , (53)

in accordance with the constraint (48). Note that this result implies Casimir-scaling for the
cusp anomalous dimension, since Γg

cusp(αs)/Γq
cusp(αs) = CA/CF . We will come back to the

significance of this observation in Section 6.4.
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FIG. 1: Diagrams whose ultraviolet poles determine the soft
anomalous dimension at two loops. The crossed vertex rep-
resents the point at which the Wilson lines are linked. The
straight lines represent eikonal propagators. Referring to the
number of Wilson lines linked by gluons, in the text we refer
to these as 3E diagrams (a-c) and 2E diagrams (d-f).

Examples of the diagrams involved in the calculation
of the two-loop anomalous dimension are shown in Fig.
1. In momentum space, the propagators and vertices
from Wilson lines are given by eikonal expressions [9].
The corresponding two-loop corrections to the anomalous
dimensions are found in the usual way [11] from the two-
loop UV single poles of these diagrams after one-loop
renormalization.

The result (4) for massless partons is a consequence of
the vanishing of the single poles of those two-loop “3E”
diagrams in which color is exchanged coherently between
three eikonal lines in the figures. The arguments of Ref.
[11] do not, however, generalize directly to massive Wil-
son lines, with velocity vectors β2

i != 0. While an ana-

lytic determination of Γ(2)
S would, of course, be desirable,

numerical determination is also of interest, and is cer-
tainly adequate to determine how far Eq. (4) generalizes
to the production of massive particles. We provide the
necessary analysis below, and show that when the β2

i are
nonzero, Eq. (4) no longer holds. A generalization of Eq.
(4), however, given by Eq. (30) below, does holds for two-
to-two processes for special momentum configurations.

Much of our analysis will be carried out in position,
rather than momentum space. In the following, we will
take every parton as massive, and use the scale invariance

of Wilson lines to set β2
i = 1. Because we are calculating

renormalization constants, we can carry out our analysis
in Euclidean space. Indeed, a numerical result in Eu-
clidean space is adequate to establish that the matrix
does not follow Eq. (4) in Minkowski space. Otherwise,
analytic continuation through Wick rotation would im-
ply that the same result would hold in Euclidean space
as well.

We begin with the diagram, Fig. 1a, in which three
eikonal lines are coupled by gluons that are linked at
a three-gluon coupling [11]. In the configuration space
evaluation of this diagram, we must integrate the posi-
tion of the three-gluon vertex over all space. The three
propagators each have one end fixed at this vertex and
the other end fixed at a point λiβi along the ith Wilson
line. Each parameter λi is integrated from the composite
vertex to infinity. This diagram vanishes in Minkowski
space for massless Wilson lines [11].

Suppressing color factors, we represent the 3E diagram
Fig. 1a as

F (2)
3g (βI) =

∫

dDx
3

∏

i=1

∫ ∞

0
dλiV (x,βI) . (5)

Here βI = {β1, β2, β3} denotes the set of three massive
velocities of the lines to which the gluons attach, while
the propagators and numerator factors of the integrand
are given by a sum over six terms,

V (x,βI) =
3

∑

i,j,k=1

εijkvijk(x,βI) . (6)

Each of these terms involves the derivative of one of the
propagators, according to the usual gauge theory rules
for the three-vector coupling,

vijk(x,βI) = −i(gµε)4βi · βj ∆(x − λjβj)∆(x − λkβk)

× βk · ∂x∆(x − λiβi) , (7)

where ∆ represents the position-space scalar propagator,

∆(x − λiβi) = − Γ(1 − ε)

4π2−ε

1

(x − λiβi)
2(1−ε)

. (8)

We work in Feynman gauge. The contribution of this
(scaleless) diagram to the anomalous dimension matrix
is found from the residue of its simple ultraviolet pole.
We note that all diagrams found from products of Wil-
son lines are scaleless overall, and are defined by their
renormalization constants [11].

At fixed x, for massive eikonals the λ integrals in Eq.
(5) are all finite in four dimensions. After these integrals
are carried out, the βi-dependence enters only through
the combination

ζi ≡
βi · x√

x2
, (9)

βij = ln
−sij µ2

M2
i M2

j



Analysis of Sterman and Tejeda-Yeomans ’03

✦ Based on factorization

✦ Define jet-function as square root of form 
factor

✦ Structure of IR divergences governed by S
✦ Same physical picture, but rather different 

definition of hard, jet and soft functions
✦ In SCET          is purely hard, since it only 

depends on hard scales.
|Mn〉

Ji(αs, ε) = [F (Q2)]1/2

|Mn〉 =
∏

i

Ji(αs, ε) S(αs, ε) |hn(αs)〉

color-diagonal eikonal finite



Towards higher-log resummations 
for n-jet processes



Sudakov resummation with SCET

✦ Many collider physics applications of SCET in 
the past few years. Resummations up to N3LL, 
however only for two jet observables, e.g.
✦ Drell-Yan rapidity dist.
✦ inclusive Higgs production
✦ thrust distribution in e+e− 

✦ Our result for anomalous dimension Γ allows 
us to perform higher-log resummations also for 
n-jet processes

Idilbi, Ji, Ma and Yuan ‘06 ; 
Ahrens, TB, Neubert, Yang ‘08

TB, Neubert, Xu ‘07

TB, Schwartz ’08



2-jet example: thrust T

✦ Prediction for event-shape variable thrust dominated by 
perturbative uncertainty. NLO Ellis et al. ’81, NNLO 
corrections Gehrmann et al. ‘07.

✦ Traditional methods allowed resummation to NLL Catani 
et al. ’93 but not beyond.

✦ Using factorization theorem in SCET we were able to derive 
NNNLL resummed distribution TB and Schwartz, ‘08.

✦ Need only existing perturbative input. Analytic result, no 
unphysical Landau-pole singularities. Match to NNLO.

✦ Observe dramatic improvement of convergence. 

1 Introduction

Lepton colliders, such as the Large Electron-Positron collider lep which ran from 1989-2000
at cern, provide an optimal environment for precision studies in high energy physics. Lacking
the complications of strongly interacting initial states, which plague hadron colliders, lep has
been able to provide extremely accurate measurements of standard model quantities such as
the Z-boson mass, and its results tightly constrain beyond-the-standard model physics. The
precision lep data is also used for QCD studies, for example to determine the strong coupling
constant αs. With the variation of αs known to 4-loops, one should be able to confirm in
great detail the running of the coupling, or use it to establish a discrepancy which might
indicate new physics. Even at fixed center-of-mass energy, differential distributions for event
shapes, such as thrust probe several energy scales and are extremely sensitive to the running
coupling. Moreover, event shape variables are designed to be infrared safe, so that they can be
calculated in perturbation theory and so the theoretical predictions should be correspondingly
clean. Nevertheless, extractions of αs from event shapes at lep have until now been limited
by theoretical uncertainty from unknown higher order terms in the perturbative expansion.

One difficulty in achieving an accurate theoretical prediction from QCD has been the
complexity of the relevant fixed-order calculations. Indeed, while the next-to-leading-order
(NLO) results for event shapes have been known since 1980 [1], the relevant next-to-next-
to-leading order (NNLO) calculations were completed only in 2007 [2, 3]. In addition to the
loop integrals, the subtraction of soft and collinear divergencies in the real emission diagrams
presented a major complication. In fact, this is the first calculation where a subtraction scheme
has been successfully implemented at NNLO [4]. However, even with these new results at hand,
the corresponding extraction of αs continues to be limited by perturbative uncertainty. The
result of [5] was αs(mZ) = 0.1240 ± 0.0033, with a perturbative uncertainty of 0.0029. This
NNLO result for the strong coupling constant comes out lower than at NLO, but 2σ higher
than the PDG average αs(mZ) = 0.1176 ± 0.0020 [6]. Actually, the most precise values of αs

are currently determined not from lep but at low energies using lattice simulations [7] and
τ -decays [8]. An extensive review of αs determinations is given in [9], new determinations
since its publication include [10, 11].

To further reduce the theoretical uncertainty of event shape calculations, it is important
to resum the dominant perturbative contributions to all orders in αs. To see this, consider
thrust, which is defined as

T = max
n

∑
i |pi · n|∑

i |pi|
, (1)

where the sum is over all momentum 3-vectors pi in the event, and the maximum is over all
unit 3-vectors n. In the endpoint region, T → 1 or τ = (1−T ) → 0, no fixed-order calculation
could possibly describe the full distribution due to the appearance of large logarithms. For
example, at leading order in perturbation theory the thrust distribution has the form

1

σ0

dσ

dτ
= δ(τ) +

2αs

3π

[
−4 ln τ − 3

τ
+ . . .

]
, (2)

where the ellipsis denotes terms that are regular in the limit τ → 0. Upon integration over

1

1− T ≈ M2
1 + M2

2

Q2



Higgs production pp → H+X

✦ Factorization theorem for partonic cross section 
near threshold 

✦ Can solve RG equations for the different parts: 
this resums log’s of scale ratios.
✦ equivalent to soft-gluon resummation

✦ Soft scale is set dynamically via the fall-off of 
the PDF. For mH= 120 GeV, 

σpart = Ct(m2
t , µ

2) H(m2
H , µ2) S(m2

H(1− z)2, µ2)

z = m2
H/ŝ→ 1

weight function 
not strongly peaked

near z=1
σhad ∝

∫ 1

0
dz z1.5σpart(z)



✦ Soft scale is ~ mH/2, not much lower than hard scale. 
No large soft logarithms.

✦ however, the threshold region is numerically 
large, gives ~ 90% of NLO and NNLO 
correction

✦ Even after resummation of log’s, higher order 
corrections are very large.

• K!factors defined with respect

• With                            and                     but

σLO(µF = µR = MH)

µF (R) = χL(R)MH 0.5≤ !F/!R ≤ 20.5≤ !L(R) ≤ 2

+40%

+12− 15%

• K!factors defined with respect

• With                            and                     but

σLO(µF = µR = MH)

µF (R) = χL(R)MH 0.5≤ !F/!R ≤ 20.5≤ !L(R) ≤ 2

+15 − 20 %

+ 6%

NNLL effect

NNLL effect

NNLL effect

+ 12/15 %

+ 6 %

 Resummation : K-factors Catani, deF, Grazzini, Nason (2003)

µF,R = χF,R MH

0.5 ≤ χF,R ≤ 2

0.5 ≤ χF

χR
≤ 2

Tevatron

LHC
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Catani, de Florian, Grazzini, Nason ’03



Origin of the large corrections
✦ Hard function gets large higher order 

corrections

✦ The space-like form factor has well behaved 
expansion:

✦ use RG to evolve back to 

 H =                +              +             + ... 

2

33

H(m2
H , µ2 = m2

H) = 1 + 5.50αs(m2
H) + 17.24α2

s(m
2
H) + . . .

= 1 + 0.623 + 0.221 + . . .

H(m2
H , µ2 = −m2

H) = 1− 0.15− 0.0012 + . . .

µ2 = +m2
H

Ahrens, TB, Neubert, Yang ’08; → talk by Li Lin Yang at Pheno 



Resummation by RG evolution
✦ Evaluate each part at its characteristic scale, 

evolve to common scale:

m2
H

−m2
H

0

m2
t

µ2

ffgg(τ/z, µf )

S(ŝ(1− z), µ2
s)

H(m2
H , µ2

h)

Ct(m2
t , µ

2
t )

µ2
f

34

Parton luminosity



Numerical results

✦ Includes soft-gluon resummation, but the main effect 
arises from scale setting                   in hard function.

✦ RG improved NNLO result is 8% larger than 
fixed order (13% at Tevatron).

MSTW2008NNLO

MSTW2008NLO

MSTW2008LO
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Figure 6: The fixed-order (left) and RG-improved (right) cross-section predictions including
perturbative uncertainty bands due to scale variations for the Tevatron (upper) and LHC
(lower plots). In contrast to Figure 5, different PDF sets are used according to the order of
the calculation.

after RG improvement are fully contained in the lower-order ones and the K-factor is close
to 1, in particular for the LHC.1 In fixed-order calculations it is customary to use PDFs ex-
tracted from a fit using predictions of the same order. Doing so absorbs universal higher-order
corrections into the PDFs. Since resummed calculations contain contributions of arbitrarily
high orders, the optimal PDF choice is less clear. If the same large higher-order corrections
affect both the observable one tries to predict and the cross sections used to extract the PDFs,
it would be quite problematic to perform a resummation in one case and not the other. For
our case, the relevant input quantity is the gluon PDF at low x, which is mostly determined
by measurements of scaling violations in the DIS structure function, ∂F2(x, Q2)/∂Q2. The
higher-order corrections associated with the analytic continuation of the time-like gluon form
factor, which we resum, do not affect the DIS cross section, and so are not universal and

1For MRST2004 PDFs [52], the K-factors after resummation are somewhat larger, K ≈ 1.3 for the LHC,
see [18].

18

µ2 = −m2
H



NkLL for n-jet processes
✦ The necessary ingredients are

✦ hard functions: from fixed-order results for on-
shell amplitudes. New unitarity methods allow 
calculation of one-loop amplitudes with many 
legs (→ NNLL resummation)

✦ jet function: imaginary part of two-point 
function, inclusive jet function is known to two 
loops. 

✦ soft function:  matrix element of Wilson lines, 
one-loop calculation is comparatively simple. 

✦ Then resum log’s of different scales using RG 
evolution.



Automatization

✦ in the longer term, this will 
hopefully lead to automated 
higher-log resummations for 
jet rates

✦ goes beyond parton showers, 
which are only accurate at 
LL, even after matching

✦ predicts jets, not individual 
partons

jet rates

|M
n 〉Γ

Sn

J



Conclusion
✦ IR divergences of scattering amplitudes in gauge 

theories can be absorbed into multiplicative Z-factor, 
derived from anomalous dimension Γ of operators in 
SCET.

✦ Form of Γ is severely constrained from non-abelian 
exponentiation, soft-collinear factorization and 
collinear limits → Matthias’ talk

✦ we conjecture Γ to have only dipole color-
correlations to all orders in PT. 

✦ Are on track to perform higher-log resummation for 
n-jet processes at LHC using RG evolution SCET.


