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In this talk I will discuss the dynamics of gravitationally bound systems 
composed of black hole (BH) or neutron star (NS) constituents:



There are a number of reasons why these systems are physically well 
motivated:

I.   Realized astrophysically (e.g., the Hulse-Taylor binary pulsar, 
1972)

2.   Strong emitters of gravitational radiation, so are relevant to 
the experimental program in gravitational waves (LIGO/VIRGO, 
LISA)

3.   Their dynamics is characterized by a hierarchy of length scales.       

Natural description in terms of Effective Field 
Theories (WG+ I.Z. Rothstein, PRD 

2005)

New applications of Feynman integral methods



Binary Inspirals and LIGO
An interesting class of signals for gravitational wave detectors (eg, LIGO/
LISA) consists of radiation induced inspiral of compact binary systems (BH 
or NS constituents).   Why?

(from Cutler+Thorne, gr-qc/0204090)

1. Such systems are strong emitters of gravitational radiation:
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2. Many expected inspiral events per year for upgraded LIGO: 

giving values in the LIGO range                                                          
for, eg, solar mass NS/NS at 

Box 1
Brief Summary of Detection Capabilities of Advanced LIGO (LIGO-II) Interferometers

• Inspiral of NS/NS, NS/BH and BH/BH Binaries: The table below 25,15 shows estimated rates
Rgal in our galaxy (with masses ∼ 1.4M! for NS and ∼ 10M! for BH), the distances DI and DWB to
which initial IFOs and advanced WB IFOs can detect them, and corresponding estimates of detection
rates RI and RWB; Sec. 2.3.

NS/NS NS/BH BH/BH in field BH/BH in clusters

Rgal, yr−1 10−6–5× 10−4
∼< 10−7–10−4

∼< 10−7–10−5 ∼ 10−6–10−5

DI 20 Mpc 43 Mpc 100 100
RI, yr−1 3 × 10−4 – 0.3 ∼< 4 × 10−4 – 0.6 ∼< 4 × 10−3 – 0.6 ∼ 0.04 – 0.6
DWB 300 Mpc 650 Mpc z = 0.4 z = 0.4
RWB, yr−1 1 – 800 ∼< 1 – 1500 ∼< 30 – 4000 ∼ 300 – 4000

• Tidal disruption of NS by BH in NS/BH binaries: First crude estimates suggest WB IFOs can
measure onset of disruption at 140Mpc well enough to deduce the NS radius to 15% accuracy (compared
to current uncertainties of a factor ∼ 2); see table above for rates; Sec. 2.4.
• BH/BH merger and ringdown: Rough estimates suggest detectability, by WB IFOs out to the
cosmological distances shown in Fig. 2(b); rates for BH/BH total mass ∼ 20M! are in table above; rates
for much larger masses are unknown; Sec. 2.5.
• Low-Mass X-Ray Binaries: If accretion’s spin-up torque on NS due is counterbalanced by
gravitational-wave-emission torque, then WB IFOs can detect Sco X-1, and NB IFOs can detect ∼ 6
other known LMXB’s; Sec. 2.7.
• Fast, Known Spinning NS’s (Pulsars with pulse frequency above 100 Hz): Detectable by a
advanced NB IFO in 3 months’ integration time, if NS ellipticity is ε ∼> 2× 10−8(1000Hz/f)2(r/10kpc),
where f is gravity wave frequency (twice the pulsar frequency) and r is distance; actual ellipticities are
unknown, but plausible range is ε ∼< 10−6; Sec. 2.7.
• Fast, Unknown Spinning NS’s: Unknown frequency wandering and doppler shifts degrade the
detectable ellipticity ε by a factor of a few to ∼ 15, so detection with a NB IFO requires ε ∼> (0.6 to
3) × 10−5(100Hz/f)2(r/10kpc); Secs. 2.2 and 2.7.
• Centrifugally Hung-Up Proto Neutron Stars in White-Dwarf Accretion-Induced Collapse
and in Supernovae: Dynamics of star very poorly understood; if instability deforms star into tumbling
bar, may be detectable by WB IFOs to ∼ 20 Mpc (the Virgo Cluster), and possibly farther; event rates
uncertain but could be enough for detection; Sec. 2.6.
• Convection of Supernova Core: May be detectable by WB IFOs, via correlations with neutrinos,
for supernovae in our Galaxy and possibly Magellanic Clouds; Sec. 2.6.
• Gamma Ray Bursts: If triggered by NS/BH mergers, a few per year could be detectable by WB
IFOs; if none are seen individually, statistical studies could nevertheless confirm gravity-wave emission
by the gamma-burst triggers; Sec. 2.8.
• Stochastic Background: Detectable by cross correlating Hanford and Livingston 4km detector
outputs, if Ω = (gravitational-wave energy in ∆f ∼ f ∼ 40 Hz) ∼> 5 × 10−9; there are many possible
sources of such waves in very early universe, all very speculative; Sec. 2.9.

cutlerThorne: submitted to World Scientific on April 30, 2002 9
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−22

R ∼ 3000Mpc



3. Signal is long duration:   For binary in close but non-relativistic orbit, 
can use virial thm. to get estimate of orbital dynamics:
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This correspond to orbital parameters
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In this regime, the energy loss of the binary to GW’s is approx. given 
by the quadrupole rad. formula:
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for the number of orbital cycles spent in the detector band.    



Large number of orbital cycles in LIGO band

LIGO is sensitive to at least                 corrections beyond 
Newtonian gravity for binary dynamics.    (Cutler et. al. astro-ph/
9208005)

(v/c)6

What can be learned:

2.  Stringent tests of (classical) General Relativity.

3.  Structure of black holes or neutron stars? (eg., 
dynamics of BH horizons?)

1.  Accurate parameter extraction (masses, spins, 
distances) for compact binaries out 
to                         .R ∼ 1000Mpc

“Precision 
gravity”

(even higher order corrections may also important for BH/BH + 
matching to numerical GR)



Non-relativistic binary problem is also interesting from the point of view 
of field theory, as it is a problem with many different length scales.  E.g, 
for binary BH:

rs = Black hole radius r = Orbital radius

λ = Wavelength of grav. radiation

Scales are correlated:   r ∼ rs/v2 (virial thm.) λ ∼ r/v

 Typical three-velocityv ! 1



Because scales are correlated, a single expansion parameter controls 
qualitatively different physical effects....

This motivates an Effective Field Theory formulation of the binary problem.   
For example, in the EFT language:

(Alternative to “post-Newtonian” expansion of Blanchet, Damour, Schafer,...
(EU) and Will et. al. (US))

1.    Only one scale appears at a time in the perturbative 
expansion.     This simplifies the (Feynman) integrals.

2.    Can regularize UV (multipole) and IR (Coulomb) 
divergences in dimensional regularization, by the usual 
methods.

4.    Feynman vertices can be automatized in a form suitable 
for computer algebra (Mathematica).

3.   Use RG to sum logs of scale ratios = ln v



Extended objects (BH/NS) + GR (the “full 
theory”) 1

µ
= rs

Relativistic point particle + GR 

1

µ
= r

2-body NR problem

Composite object + radiation gravitons 
(NRGR)

non-trivial RG running

non-trivial RG running?

1

µ
=

r

v

match

match

Binary problem involves a hierarchy of scales, 
Simplify by integrating out one at a time

Binary stars as an EFT problem
rs ! r ! r/v



Starting point is a theory of point particles coupled to metric tensor 

S = SEH + Spp

Gravitational dynamics:

SEH = −2m2

Pl

∫
d4x

√

gR(x) (m2

Pl = 1/(32πGN ))

Spin dofs: (see R. Porto + I. Rothstein, 2006-2008)

Spp = −m

∫
dτ + c

∫
dτR2

µναβ + · · ·

geodesic (test 
particle) motion

finite size 
corrections

BH/NS sources:     Write most general diffeomorphism invariant Lagrangian

dτ2 = gµν(x)dxµdxν

gµν(x)



Calculating Observables:
In principle, all observables can be read off the “gravitational Wilson loop”

2

describe below in Sec. ??. Because these operators are
intrinsic to the structure of the sources, the matching can
be done for a single source in isolation, independently of
the complicated binary star dynamics. In this way the
EFT manages to disentangle the model dependent as-
pects of the gravitational wave signals from the features
that arise as unambiguous predictions of general relativ-
ity.

Any properly constructed EFT has manifest power
counting in the expansion parameter (here, the typical
orbital velocity v). In the present context, this means
that it is possible to assign velocity scaling dimensions
to the fields in such a way that an arbitrary operator
or Feynman diagram in the perturbative expansion will
have definite v scaling. The advantage of this is that
it is possible to easily determine which diagrams, built
out of the vertices generated by the effective Lagrangian,
contribute at a given order in perturbation theory.

In the next section we turn to a formulation of the
EFT. In Section we show that the coefficients of opera-
tors in the effective lagrangian undergo RG running with
scale, and we work out some of the simplest consequences
of the RG flows. Finally in Section, we discuss how, given
a more complete stellar model one can determine the co-
efficients of operators in the effective theory. This has
bearing on the 3PN ambiguity encountered in [? ].

II. THE EFFECTIVE THEORY

The starting point of our EFT formulation consists of
a theory of relativistic point particles coupled to gravity

S = SEH + Spp, (1)

where

SEH = −2m2
Pl

∫
d4x
√

gR(x), (2)

describes the graviton dynamics2 and

Spp = −
∑

a

ma

∫
dτa +

∑

a

c(1)
a

∫
dτaR(xa)

+
∑

a

c(2)
a

∫
dτaRµν(xa)ẋµ

a ẋν
a + · · · (3)

determines the motion of the 2-body system (a = 1, 2
runs over the particle species). In this equation, dτa =√

gµνdxµ
adxν

a is the proper time along the worldline xµ
a

of the a-th particle. We will ignore in this paper addi-
tional degrees of freedom that describe the spin or any
additional multipole moments carried by each particle.

2 Our conventions are Rµν = ∂αΓα
µν − ∂νΓα

αµ + · · · and signature
(+,−,−,−).

Thus strictly speaking the formalism presented here can
be used only to describe the dynamics of spinless black
holes. We will save the issue of including multipole mo-
ments in the EFT for future work

The first term in Spp generates geodesic motion about
the metric gµν (ma is the mass of the a-th point parti-
cle). Besides this term, we have also explcitly shown the
first two of an infinite set of possible non-minimal cou-
plings of the point objects to the spacetime metric. These
operators have unit mass dimension, so we expect the co-
effcients c(i)

a to be proportional to a single power of some
characteristic length scale rs. Since these non-minimal
couplings cause deviations from pure geodesic motion,
one would expect them to be associated with the lead-
ing effects of curvature induced tidal forces. This means
that the higher-dimension “tidal” operators in Eq. (??)
encode information about the non-vanishing spatial ex-
tent of the binary star constituents. Thus by including
the most general set of such operators, we systematically
take into account all possible corrections due to the finite
size rs of the object. We will discuss in a Sec. ?? how
one goes about determining the precise relation between
the coefficients of these operators and the microscopic
physics (ie, the stellar structure model) that determines
the internal structure. A discussion of the laws of motion
for extended objects in general relativity can be found in
[? ].

A gravitational wave detector such as LIGO measures
the power emitted in gravitational radiation from the bi-
nary system. Given the action Eq. (??), it is in principle
possible to calculate this quantity by writing the metric
as gµν = ηµν +hµν and integrating out the graviton field
hµν to obtain an effective action for the particle coordi-
nates alone

exp[iSeff (xa)] =
∫

Dhµν exp[iSEH + iSpp]. (4)

The effective action Seff [xa] has a real part which gen-
erates the coupled equations of motion for the 2-body
system, and an imaginary part that measures the total
number of gravitons emitted by a fixed two-particle con-
figuration {xa

µ} over an arbitarily large time T →∞

1
T

ImSeff [xa] =
1
2

∫
dEdΩ

d2Γ
dEdΩ

, (5)

where dΓ is the differential rate for graviton emission
from the binary system. From this quantity we obtain the
classical power spectrum dP = EdΓ seen by the detector.

In principle, one could directly evaluate Eq. (??) using
the Lorentz covariant Feynman rules generated by the
Einstein-Hilbert lagrangian. However, the perturbative
series generated in this way is not optimal for taking the
limit v % 1. For example, the one-graviton exchange
term in iSeff [xa],

∑

a,b

mamb

16m2
Pl

∫
dτadτb

[
1− 2(ẋa · ẋb)2

]
DF (xa − xb) (6)

iSeff (xa) = Feynman diagrams that remain connected if particle 
lines are removed  (no graviton loops)

+ + · · ·

These diagrams are computed w/ conventional Feynman rules from SEH + Spp

iSeff (xa) =

=( (
2

(no propagators for particle lines)

(Donoghue, gr-qc/9512024)

holding the particle coordinates             fixed.      Diagrammatically

(gµν = ηµν + hµν)

xµ
a(τ)



Seff (xa) generates all relevant observables:

classical e.o.m.’s for x
µ

a

2
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from the binary system. From this quantity we obtain the
classical power spectrum dP = EdΓ seen by the detector.

In principle, one could directly evaluate Eq. (??) using
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limit v % 1. For example, the one-graviton exchange
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gives the differential 
decay rate for graviton 
emission

ReSeff [xa]

{xµ

a}(for fixed particle paths            and a large time              )T → ∞

From the rate obtain the radiated energy in gravitational waves

By conservation of energy this is equal to mechanical energy loss 

P =
∫

dEdΩ
[
E

d2Γ
dEdΩ

]

dE

dt
= −P ω(t) φ(t) =

∫ t

dτω(t)

GW freq.
GW 
phase



The presence of particle sources breaks spatial translations.     Thus spatial 
momentum is not conserved and must be integrated over in Feynman 
diagrams.

Even though calculations involve diagrams of tree topology only, interesting 
Feynman integral structures arise in calculations.    E.g.

is a Feynman integral that has contributions from two regions of momenta

(k0
∼ v/r,k ∼ 1/r)

(k0
∼ v/r,k ∼v/r)

Potential:

Radiation:



Thus the pt. particle + gravity theory used to generate the Feynman rules 
contains scales that have not been properly disentangled.   Perturbation 
theory does not scale homogeneously with the expansion parameter 

∼ v?

The solution to this problem is well known from QCD:   

Construct an EFT in which fluctuations in each momentum region 
correspond to a separate field (NRQCD, SCET,...)

v ! 1



Split graviton field into:
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contains an infinite number of terms from the NR ex-
pansion of the proper times dτ2

a = ηµνdxµ
adxν

a and the
Feynman propagator DF (x). While for a term like this
it is easy to do the expansion in small velocity, in a more
complicated diagram with multiple internal graviton lines
it becomes more cumbersome to keep track of all the nec-
essary terms at a given order in v. Furthermore suppose
one is interested, because of the limited resolution of the
detector, in computing an observable only to some fixed
order in v. Then how many diagrams do we need to
keep? It is not possible to answer this question with the
Feynman rules generated by Eq. (??) as it stands.

There is another, more formal, problem with the
Lorentz covariant Feynman rules. Ignoring the tidal
operators, the expansion parameter appears to be ∼
m/mPl, which in the case of astrophysical masses is much
greater than unity. Does this mean that the linearized ap-
proximation is non-sensical for macroscopic bodies? For
a system of several particles, the answer is clearly affirma-
tive if the particles are close together. However, the NR
limit necessarily implies that the particles are far apart,
introducing another large scale into the expansion and

A. Kinematics

To construct an EFT that has manifest velocity power
counting, we must analyze more carefully the kinematic
configurations that arise in the binary problem. Consider
a binary star system composed of slowly moving neutron
stars or black holes. Let m characterize the typical mass
of the constituents (taking them, in this discussion, to
be roughly the same size). For an astrophysical system,
we will clearly have m " mPl, so one would naively
conclude that Feynman diagram perturbation theory, an
expansion seemingly in m/mPl, is invalid in the context
of the dynamics of the binary system. While this may be
true in the case where the dynamics is highly relativistic,
the requirement that v # 1, together with the virial
theorem for Newtonian orbits,

v2 ∼ m

m2
Plr

, (7)

While the typical particle momenta will be of order
(E ∼ mv2,p ∼ mv), the gravitons appearing in a generic
Feynman diagram have momenta that can be divided into
two classes. Gravitons with momentum scaling as (k0 ∼
v/r,k ∼ 1/r), mediate the forces responsible for binding
the 2-body system. These potential gravitons can never
go on shell and thus must not appear as propagating
degrees of freedom in a properly formulated EFT. On the
other hand, radiation gravitons with momentum (k0 ∼
v/r,k ∼ v/r) can appear on-shell and must be kept in
the EFT to reproduce the correct long distance physics.

Note that the interaction of an NR particle with a
single potential or radiation graviton causes the parti-
cle to recoil by an amount |k|/|p| ∼ h̄/L # 1 , where
L ∼ mvr is the typical orbital angular momentum of the

system. Thus as far as the graviton dynamics is con-
cerned, the NR particles can be treated as background
non-dynamical sources. Consequently, the EFT that de-
scribes the binary configuration, has more in common
with heavy particle effective field theories (eg, HQET), in
which light modes interact with a static, non-propagating
source, than a theory such as NRQCD, where the quark
and gluon degrees of freedom have momentum compo-
nents which differ only by powers of the velocity.

However, in contrast to HQET, where QCD confine-
ment limits the time scale over which heavy quarks can
interact with soft gluons in the EFT, in the binary sys-
tem gravitons can interact with the NR particles a large
number of times, typically L times per orbital period,
leading to effects such as non-trivial orbital motion or
radiation reaction damping forces which must be prop-
erly accounted for.

B. NRGR

The previous discussion makes it clear that to con-
struct a NR EFT for the binary dynamics , we must in-
tegrate out all field degrees of freedom with wavelengths
shorter than the orbital distance scale r. The result-
ing EFT, which we call NRGR, will have manifest power
counting in the velocity v. To construct NRGR, we pro-
ceed in several steps. First, in order to have interaction
vertices with well defined velocity scaling, we simply ex-
pand Spp in powers of the particle three-velocities. Ig-
noring for now the effects of the higher-dimension tidal
operators

Spp =
∑

a

ma

∫
dx0 1

2
v2

a −
1
2
h00 + 2h0ivai

−
∑

a

ma

∫
dx0 1

8
v4

a +
1
2
hijvaivai + · · · ,

where h00, h0i, hij are evaluated on the point particle
worldline (x0,xa(x0)) (we use the Euclidean metric δij

to raise/lower spatial indices i, j = 1, 2, 3).
However, this is not enough. The propagator for the

field hµν appearing here is still fully relativistic, so it does
not distinguish between potential gravitons, which have
no right to appear as degrees of freedom in NRGR, and
radiation gravitons. Because of this, the Feynman rules
still will not scale homogeneously with v. To deal with
this problem, it is convenient to decompose the graviton
as

hµν(x) = h̄µν(x) + Hµν(x), (8)

where Hµν represents the potential gravitons, with

∂iHµν ∼
1
r
Hµν ∂0Hµν ∼

v

r
Hµν , (9)

and h̄µν describes a long-wavelength radiation field

∂αh̄µν ∼
v

r
h̄µν . (10)

radiation graviton potential graviton
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v/r,k ∼ 1/r), mediate the forces responsible for binding
the 2-body system. These potential gravitons can never
go on shell and thus must not appear as propagating
degrees of freedom in a properly formulated EFT. On the
other hand, radiation gravitons with momentum (k0 ∼
v/r,k ∼ v/r) can appear on-shell and must be kept in
the EFT to reproduce the correct long distance physics.

Note that the interaction of an NR particle with a
single potential or radiation graviton causes the parti-
cle to recoil by an amount |k|/|p| ∼ h̄/L # 1 , where
L ∼ mvr is the typical orbital angular momentum of the

system. Thus as far as the graviton dynamics is con-
cerned, the NR particles can be treated as background
non-dynamical sources. Consequently, the EFT that de-
scribes the binary configuration, has more in common
with heavy particle effective field theories (eg, HQET), in
which light modes interact with a static, non-propagating
source, than a theory such as NRQCD, where the quark
and gluon degrees of freedom have momentum compo-
nents which differ only by powers of the velocity.

However, in contrast to HQET, where QCD confine-
ment limits the time scale over which heavy quarks can
interact with soft gluons in the EFT, in the binary sys-
tem gravitons can interact with the NR particles a large
number of times, typically L times per orbital period,
leading to effects such as non-trivial orbital motion or
radiation reaction damping forces which must be prop-
erly accounted for.

B. NRGR

The previous discussion makes it clear that to con-
struct a NR EFT for the binary dynamics , we must in-
tegrate out all field degrees of freedom with wavelengths
shorter than the orbital distance scale r. The result-
ing EFT, which we call NRGR, will have manifest power
counting in the velocity v. To construct NRGR, we pro-
ceed in several steps. First, in order to have interaction
vertices with well defined velocity scaling, we simply ex-
pand Spp in powers of the particle three-velocities. Ig-
noring for now the effects of the higher-dimension tidal
operators

Spp =
∑

a

ma

∫
dx0 1

2
v2

a −
1
2
h00 + 2h0ivai

−
∑

a

ma

∫
dx0 1

8
v4

a +
1
2
hijvaivai + · · · ,

where h00, h0i, hij are evaluated on the point particle
worldline (x0,xa(x0)) (we use the Euclidean metric δij

to raise/lower spatial indices i, j = 1, 2, 3).
However, this is not enough. The propagator for the

field hµν appearing here is still fully relativistic, so it does
not distinguish between potential gravitons, which have
no right to appear as degrees of freedom in NRGR, and
radiation gravitons. Because of this, the Feynman rules
still will not scale homogeneously with v. To deal with
this problem, it is convenient to decompose the graviton
as

hµν(x) = h̄µν(x) + Hµν(x), (8)

where Hµν represents the potential gravitons, with

∂iHµν ∼
1
r
Hµν ∂0Hµν ∼

v

r
Hµν , (9)

and h̄µν describes a long-wavelength radiation field

∂αh̄µν ∼
v

r
h̄µν . (10)

Hµν(x) =

∫
d3k

(2π)3
e
ik·x

Hkµν(x0)

In addition, need to multipole expand (as in NRQCD) the couplings of          
to either particles or potential modes.     This gives a Lagrangian whose 
Feynman rules scale as definite powers of velocity:

h̄µν

∂0Hkµν ∼
v

r
Hkµν

xµ ∼ r/v k ∼ 1/r m/mPl ∼
√

vL

h̄µν/mPl ∼ v5/2/
√

LHkµν/mPl ∼ v2/
√

L

(L = mvr ! 1)

Any Feynman diagram scales as L
n
v

k(n ≤ 1, k ≥ 0)

Loop 
counting



Examples:
m

H00

Pt. particle Newton potential
interaction:

∼

√

L

Potential 3-graviton vertex:
∼

v2

√

L

Radiation-potential interaction:
∼

v5/2

√

L



Integrate out potential modes to get effective Lagrangian for radiation 
modes: 

Γ[h̄] = Γ0 + Γ1 + · · ·
O(h̄0) O(h̄1)

Γ0 =
∫

dtL[xa] = many-particle Lagrangian, Feynman graphs w/ 
no ext. 

Γ1 = − 1
2mPl

∫
d4xTµν(x)h̄µν(x)

Tµν(x) = grav. energy-mom. “pseudo-tensor”

h̄µνfrom graphs with one ext.

∂µTµν = 0 (Ward id.)

h̄µν



Zero graviton sector:   2-body potentials

LO:  

(b),(c):  Calculating in dim. reg. ∼

∫
d3−εk

(2π)3−ε

1

k2
= 0

(a) =
im1m2

32πm2

Pl

∫
dt

1

|x1 − x2|

(

−
im1

2mPl

)(

−
im2

2mPl

)
∫

dt1dt2〈H00(x1)H00(x2)〉

O(v0)

L =
1
2

∑

a

ma!v
2
a +

GNm1m2

r
(Newton)



NLO:

At

+(1 ↔ 2)

O(v2)

LEIH =
1
8

∑

a

ma!v
4
a +

GNm1m2

2r

[
3(!v2

1 + !v2
2)− 7!v1 · !v2 − (!v1 · n)(!v1 · n)

]

−G2
Nm1m2

2r2
Einstein-Infeld-Hoffman 
(1938)



NNLO:             In the EFT (Gilmore + Ross, 2008) this is given by several 
Feynman diagram topologies   (parametrization of            due to Kol + Smolkin, 2007) 

O(v4)

∼ G3
Nv0

Hµν

∼ G2
Nv2∼ GNv4



Graphs with            topology involve finite one-loop Feynman integrals 
in 

G2
Nv2

d = 3
1
k2

1.  Euclidean signature, space dimension 

2.  Massless propagators          (Newton exchange)

After tensor reduction to scalar integrals, these can be done with the 
standard formula

∫
ddk

(2π)d

1
[(k + p)2]α [k2]β

=
1

(4π)d/2

Γ(α + β − d/2)
Γ(α)Γ(β)

Γ(d/2− α)Γ(d/2− β)
Γ(d− α− β)

(p2)d/2−α−β



Graphs with           involve finite two-loop Feynman integrals of the formG3
Nv0

I(k) =
∫

ddp
(2π)d

ddq
(2π)d

{k · pq2,k · qp2,p2q2,k2p · q}
D(k,p,q)

D(k,p,q) = p2q2(k + q)2(k + p)2(k + q + p)2

Only the last integral is genuinely two-loop, but can be reduced to the 
master one-loop integral

w/

∫
ddk

(2π)d

1
[(k + p)2]α [k2]β

by applying the integration by parts technique (see e.g., Smirnov).



Putting everything together

NNNLO:            Many individual diagrams (~100) but no new Feynman integrals 
(Gilmore+Ross, in progress)



Tµν = +
h̄µν

+

One graviton sector:  Radiation
Must compute the graphs

h̄µν +

· · · h̄µν

h̄µν

+

v0 v2

(1st graph=LO. Last three graphs are NLO).



Γ[h̄]1∂2 =
1

2mPl

∫
dx0

[
EijR0i0j +

4
3
Bi,jkR0jik +

1
3
Eijk∂kR0i0j

]
E-quad B-quad E-octo

This gives the multipole moments of 2-body system

Eij =
∫

d3x
[
T 00 + T aa +

11
42

x2T̈ 00 − 4
3
Ṫ 0kxk

] [
xixj

]TF +O(v4)

=
∑

a

maxi
ax

j
a

[
1 +

3
2
v2

a −
∑

b

GNmb

|xa − xb|

]
+

11
42

∑

a

ma
d2

dt2
(xa

2xi
ax

j
a)

−4
3

∑

a

ma
d

dt
(xa · vaxi

ax
j
a)− traces + O(v4)

For example, the quadrupole moment to NLO:



Can now use these moments to compute observables, e.g. radiated power to 
NLO.    Use optical theorem to get

E.g, binary system in circular orbit

Im

dE

dt
=

GN

5
〈
(

d3

dt3
Eij(t)

)2

〉 +
16GN

45
〈
(

d3

dt3
Bij(t)

)2

〉 +
GN

189
〈
(

d4

dt4
Eijk(t)

)2

〉

+ · · ·

Γ1[h̄] Γ1[h̄]

dE

dt
=

32
GN

( µ

M

)2
v10

[
1− 1247

336
v2 + · · ·

]



Radiative (long dist.) corrections:
Can use EFT to compute radiative corrections.   Everything is calculable in 
terms of the radiation Lagrangian obtained by matching

S[h̄] = SEH [h̄] + SGF + Γ[h̄]

Γ[h̄] ⊃ 1
2mPl

∫
dx0

[
EijR0i0j +

4
3
Bi,jkR0jik +

1
3
Eijk∂kR0i0j

]

All calcs. can be done in terms of this Lagrangian, for arbitrary moments 
(not just those obtained by matching to the NR limit            )v ! 1

+ · · ·



Example:    Quadrupolar graviton emission.   Amplitude is

iA =

↓ k

Eij Eij

↓ k

m

m mEij

↓ k

Eij m m

↓ k

mEij m

↓ k

+ +

+ + + · · ·

Non-linear interaction of emitted gravitons with multipole moments 
introduces both UV and IR divergences.



Leading IR divergence:

m

In(|k|) =
∫

ddq
(2π)d

(q2)n

k2 − (k + q)2 + iε

(n ≥ −1)

Can be reduced to to scalar integrals of the form 

n = −1Note that for                  this has an infrared  divergence.  
As q→ 0

Eij

↓ k

(0,q)(|k|,k + q)

I−1(|k|) =
∫

ddq
(2π)d

1
q2

1
k2 − (k + q)2 + iε

∼
∫

d3q
(2π)3

1
q2(k · q)

∼ 1
εIR

(d = 3− 2ε)

Physically, this is the familiar “Coulomb” singularity:    nearly on-shell 
graviton interacts with a long range         potential.1/r



The complete result is 
Eij

↓ k

m

Note that to order                         , the IR singularities drop from GNm|k| ∼ v3 |A|2

[−2iGNm|k|]
(
−k2 + iε

πµ2
IR

eγE

)−ε [
1

2εIR
+

11
12

+ 2ε

(
π2

16
+

203
144

)]
= iALO

×

(
ALO =

k2

4mPl
ε∗ijEij(|k|)

)

∣∣∣∣
A
ALO

∣∣∣∣
2

= 1 + 2GNm|k|+O(1/ε2IR)

The “Coulomb tail” is responsible for non-analytic corrections to the 
radiated power in gravitons.    Eg,

Pv3 = PLO × (4πv3) Pv5 = PLO ×
(
−8191

672
πv5

)



Subleading IR, Leading UV:

The following graphs at NNLO

mEij m

↓ k

Eij m m

↓ k

are UV divergent.   This reflects the interaction of nearly on-shell outgoing 
graviton with the          potential of the two-body system.   Eg.1/r2

mEij m

↓ k

∫
ddq

(2π)d

1
|q|

1
k2 − (k + q)2 + iε

∼ 1
|q|

∼
∫

d3q
(2π)3

1
|q|3 ∼

1
εUV



These (two-loop) integrals are fairly straightforward to do, as they 
correspond to nested one-loop integrals after scalar reduction.

The more challenging integral is 

m mEij

↓ k

which has both UV and IR divergences.     Scalar reduction turns this into 
the set of integrals

I(n1, n2, n3)(|k|) =
∫

ddq
(2π)d

ddp
(2π)d

1
k2 − (k + q)2 + iε

1
k2 − (k + q + p)2 + iε

×
(

1
q2

)n1 (
1

(k + q)2

)n2 (
1
p2

)n3



Basic strategy for  “master integral”                      :I(n1, n2, n3)

1.     Introduce a single Mellin-Barnes transform

4.   Evaluate Mellin-Barnes contour by residues.      This 
gives a product of Gamma function ratios

∫
ddk

(2π)d

1
[(k + p)2]α [k2]β

2.     Do “inner” momentum integration in terms of 
elementary integral 

3.     Do “outer” momentum integration in terms of 
elementary integral 

In(|k|) =
∫

ddq
(2π)d

(q2)n

k2 − (k + q)2 + iε

4F3({ni, d}, z = 1)→ 2F1({ni, d}, z = 1)→
∏

Γ({ni, d})

1
k2 − (k + l)2 + iε

=
∫ i∞

−i∞

dz

2πi
Γ(1 + z)Γ(−z)

(k2 + iε)z

((k + l)2)z+1



Result is 

mEij m

↓ k

Eij m m

↓ k

m mEij

↓ k

++

= iALO × (GNm|k)2
(
−k2 + iε

πµ2
IR

eγE

)−2ε [
− 1

2ε2IR

− 278
210

1
ε
− 7

12
π2 − 1777

14700

]

and          to order 

∣∣∣∣
A

ALO

∣∣∣∣
2

= 1 + 2πGNm|k|

+ (GNm|k|)2
[
214
105

1
2εUV

− 214
105

(
γE + ln

k2

πµ2

)
+

4
3
π2 +

634913
44100

]

|A|2 (GNm|k|)2 ∼ v6

Infrared divergences cancel to this order!



Interpretation of UV poles:

UV pole in radiative correction to           is cancelled by renormalization of 
multipole moments.     Since the subtraction scale      is arbitrary, moments 
are scale dependent in the EFT.

µ
|A|2

µ
d

dµ
Eij(k, µ) = −214

105
(GNm|k|)2Eij(k, µ)

or 
Eij(k, µ) = e−

214
105 (GN m|k|)2 ln µ

µ0 × Eij(k, µ0)

To minimize logs in the amplitude,              , while matching scale is                  
This gives terms             in observables.

µ = |k| µ0 ∼ 1/r
∼ ln v

Note that in the full theory, the amplitude is finite.    Dependence on                        
is cancelled by singularities appearing in the multipole expansion at  

1/εUV

v6

(not yet computed)



Conclusions
Gravitational wave processes are a new setting for familiar tools

2.   Multi-loop Feynman integral techniques.

Here, presented the non-relativistic expansion, but the methods work in other 
kinematic limits of interest to LIGO/LISA, with a suitably modified power 
counting scheme (eg,                        ) λ = m/M ! 1

3.   Summation of IR/UV non-analytic terms.

1.   EFTs:    Separation of scales.


