Production of Squarks and Gluinos at the LHC: The Electroweak Contributions

Maike Trenkel

Jan Germer, Wolfgang Hollik, Edoardo Mirabella

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

LoopFest VIII in Madison, Wisconsin May 8, 2009

Outline

Introduction

• **Production of Squarks and Gluinos**

classification of processes QCD and EW contributions

*t*₁ *t*₁^{*}, *q̃q̃*^{*}, and *g̃q̃* production at EW NLO handling singularities

numerical results

• Summary

SUSY – Motivation

• Supersymmetry is a **possible and very attractive extension** of the Standard Model

SUSY – Motivation

- Supersymmetry is a possible and very attractive extension of the Standard Model ...
- SUSY has predictive power good prospects for LHC!

[Buchmueller, Cavanaugh, De Roeck, Ellis, Flächer, Heinemeyer, Isidori, Olive, Paradisi, Ronga, Weiglein '08]

from combination of experimental, phenomenological, and cosmological information:

→ 95% C. L. area in the $(m_{1/2}, m_0)$ plane of CMSSM lies largely within the region that can be explored with 1fb⁻¹ at 14 TeV

Motivation (II)

Why studying production of colored SUSY particles at the LHC?

• pair production of gluinos and squarks proceeds via strong interaction 10^{3} $\sigma_{tot}[pb]: pp \rightarrow \tilde{g}\tilde{g}, \tilde{q}\bar{\tilde{q}}, \tilde{t}_1\bar{\tilde{t}}_1, \tilde{\chi}_2^o\tilde{\chi}_1^+, \tilde{v}\bar{\tilde{v}}, \tilde{\chi}_2^o\tilde{g}, \tilde{\chi}_2^o\tilde{q}$ \rightarrow large cross sections 10^{2} ãã 10 Iarge top-Yukawa coupling: top-squark \tilde{t}_1 candidate for √S = 14 TeV $\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{+}$ lightest squark NLO 10 10 high production rate m [GeV]-10

100

150

200

- cross section depend essentially on final state masses
 - → bounds on cross section allow for lower mass bounds without specifying all other SUSY parameters

350

500

450

Outline

- Introduction
- **Production of Squarks and Gluinos**
- $\tilde{t}_1 \tilde{t}_1^*$, $\tilde{q} \tilde{q}^*$, and $\tilde{g} \tilde{q}$ production at EW NLO
- Summary

Overview: Squark & Gluino Production at LO

- stops & sbottoms: L-R mixing cannot be neglected; exp. distinguishable
- top-squark pair production is diagonal at LO

Tree-level Electroweak Contributions

Squark pair production is also possible by tree-level EW processes! [Bornhauser, Drees, Dreiner, Kim '07] [Bozzi, Fuks, Herrmann, Klasen '07]

• $\mathcal{O}(\alpha^2)$: pure EW tree-level contributions ($\tilde{t}\tilde{t}^*, \tilde{q}\tilde{q}^*, \tilde{q}\tilde{q}$ prod.)

$$\left| \begin{array}{c} \gamma, Z \end{array} \right|^2$$
, $\left| \begin{array}{c} \gamma, Z \end{array} \right|^2$, $\left| \begin{array}{c} \chi^0 \end{array} \right|^2$, $\left| \begin{array}{c} \chi^0 \end{array} \right|^2$

Tree-level Electroweak Contributions

Squark pair production is also possible by tree-level EW processes! [Bornhauser, Drees, Dreiner, Kim '07] [Bozzi, Fuks, Herrmann, Klasen '07]

• $\mathcal{O}(\alpha^2)$: pure EW tree-level contributions ($\tilde{t}\tilde{t}^*, \tilde{q}\tilde{q}^*, \tilde{q}\tilde{q}$ prod.)

$$\left| \begin{array}{c} \gamma, Z \\ \gamma, Z \\$$

• $\mathcal{O}(\alpha_{s}\alpha)$: - EW-QCD tree-level interferences to $\tilde{q}\tilde{q}^{*}$ production

– EW-QCD tree-level interferences to $\tilde{q}\tilde{q}$ production

Tree-level Electroweak Contributions II

New production channel for $\tilde{g}\tilde{q}$, $\tilde{t}\tilde{t}^*$, and $\tilde{q}\tilde{q}^*$ production:

[Hollik, Kollar, MT '07], [Hollik, Mirabella '08] [Hollik, Mirabella, MT '08]

• $\mathcal{O}(\alpha_{s}\alpha)$: photon induced processes

Tree-level Electroweak Contributions II

New production channel for $\tilde{g}\tilde{q}$, $\tilde{t}\tilde{t}^*$, and $\tilde{q}\tilde{q}^*$ production:

[Hollik, Kollar, MT '07], [Hollik, Mirabella '08] [Hollik, Mirabella, MT '08]

• $\mathcal{O}(\alpha_{s}\alpha)$: photon induced processes

- not present at LO at the hadronic level
- MRST 2004 QED: inclusion of NLO QED effects in the evolution of PDFs
 - \rightarrow non-zero photon distribution
 - \rightarrow non-zero hadronic contributions

Higher Order Corrections – Squark Production

Important higher order effects due to QCD corrections:

[Beenakker, Höpker, Spira, Zerwas '95 & '97] & [Beenakker, Krämer, Plehn, Spira, Zerwas '98] \rightarrow PROSPINO, also for $\tilde{g}\tilde{q}, \tilde{g}\tilde{g}$

• $\mathcal{O}(\alpha_s^3)$: QCD NLO corrections

+ real gluon & real quark radiation

Higher Order Corrections – Squark Production

Important higher order effects due to QCD corrections:

[Beenakker, Höpker, Spira, Zerwas '95 & '97] & [Beenakker, Krämer, Plehn, Spira, Zerwas '98] \rightarrow PROSPINO, also for $\tilde{g}\tilde{q}, \tilde{g}\tilde{g}$

• $\mathcal{O}(\alpha_s^3)$: QCD NLO corrections

+ real gluon & real quark radiation

- large positive corrections
- reduced scale dependence
- negligible in normalized distributions

Higher Order Corrections – Squark Production II

Known from SM processes: also **EW corrections** can be important! of comparable size to higher-order QCD corrections [NLL: Kulesza, Motyka '08] [approx. NNLO: Langenfeld, Moch '09]

Higher Order Corrections – Squark Production II

Known from SM processes: also **EW corrections** can be important! of comparable size to higher-order QCD corrections [NLL: Kulesza, Motyka '08] [approx. NNLO: Langenfeld, Moch '09]

Higher Order Corrections – Squark Production II

Known from SM processes: also **EW corrections** can be important! of comparable size to higher-order QCD corrections [NLL: Kulesza, Motyka '08] [approx. NNLO: Langenfeld, Moch '09]

Overview: Squark and Gluino Production @ LHC

	$\mathcal{O}(lpha_{s}^{2})$	$\mathcal{O}(lpha_{ extsf{s}}^{3})$	$\mathcal{O}(lpha^2)$	$\mathcal{O}(lpha_{ extsf{s}}lpha)$	$\mathcal{O}(lpha_{ extsf{s}}lpha)$	$\mathcal{O}(lpha_{s}^{2}lpha)$
Ĩĝ	+	+	_	_	_	+
ĝq	+	+	_	_	+	+
$\widetilde{t}\widetilde{t}^*$	+	+	+	-	+	+
ą̃ą∗	+	+	+	+	+	+
q̃q	+	+	+	+	Ι	+
	Sere Serees	san and the san an		×	ويوري	see entre

Outline

- Introduction
- **Production of Squarks and Gluinos**
- $\tilde{t}_1 \tilde{t}_1^*$, $\tilde{q} \tilde{q}^*$, and $\tilde{g} \tilde{q}$ production at EW NLO
- Summary

EW NLO Corrections: Singularities at $\mathcal{O}(\alpha_s^2 \alpha)$

- UV singularities (self energies, vertices) from loop integrals
 - \rightarrow **renormalization** of quarks & squarks

 $[\tilde{t}\tilde{t}^*, \tilde{g}\tilde{q}]$: no renorm. of gluon, gluino, and α_s at this order;

- but $\tilde{q}\tilde{q}^{(*)}$: full QCD 1-loop amplitude enters, renorm. required
 - \rightarrow use α_s in \overline{MS} scheme, heavy particles decoupled;
 - \rightarrow need SUSY-restoring counterterm for \hat{g}_s]

EW NLO Corrections: Singularities at $\mathcal{O}(\alpha_s^2 \alpha)$

- UV singularities (self energies, vertices) from loop integrals
 - \rightarrow **renormalization** of quarks & squarks

 $[\tilde{t}\tilde{t}^*, \tilde{g}\tilde{q}]$: no renorm. of gluon, gluino, and α_s at this order;

- but $\tilde{q}\tilde{q}^{(*)}$: full QCD 1-loop amplitude enters, renorm. required
 - \rightarrow use α_s in \overline{MS} scheme, heavy particles decoupled;
 - \rightarrow need SUSY-restoring counterterm for \hat{g}_s]
- **IR (soft) singularities** from $m_{\gamma} = m_g = 0$
 - \rightarrow real photon and gluon bremsstrahlung

[technical: mass regularization + phase space slicing / dipole subtr.]

- collinear singularities from $m_q = 0$
 - \rightarrow real photon and gluon bremsstrahlung
 - \rightarrow factorization and redefinition of PDFs at $\mathcal{O}(\alpha)$ or $\mathcal{O}(\alpha_s)$

How to obtain a IR-finite cross section for $q\bar{q} \rightarrow \tilde{t}\tilde{t}^*$

+ redefinition of PDFs at $\mathcal{O}(\alpha)$: subtract $\ln(m_q^2)$ -terms from $\sigma_{q\bar{q}}$

How to obtain a IR-finite cross section for $q\bar{q} \rightarrow \tilde{t}\tilde{t}^*$

• soft gluon divergent diagrams γ, Z g'• interference of QCD boxes and EW Born and soft gluon bremsstrahlung q' γ, Z q' γ, Z γ, Z

Numerical Results: Hadronic Cross Sections

[Hollik, Kollar, MT '08]

$\tilde{t}_1 \tilde{t}_1^*$ prod.: Invariant mass distribution

[SPS: Snowmass Points and Slopes; SPS1a': typical mSUGRA scenario] 0.2 $\tilde{t}_1 \tilde{t}_1^*$ prod. $\tilde{t}_1 \tilde{t}_1^*$ prod. 0.15 gg fusion [fb/GeV] C 0.1 qq channels gγ fusion 0.05^ل **م**و**/وM** δ **[%]** full EW contribution -5 -0.05 SPS1a', LHC SPS1a', LHC -10 1000 1500 2000 2500 1000 1500 2000 2500 3000 M_{inv} [GeV] M_{inv} [GeV]

- \rightarrow **g** γ contributions are of comparable size to EW NLO corrections!
- \rightarrow threshold effects from stop and sbottom pairs in the loops
- \rightarrow **EW contributions** grow up to $\sim 10\%$ for large values of $M_{\tilde{t}_1\tilde{t}_1^*}$

$\tilde{q}\tilde{q}^*$ Production – IR Singularities

- diagrams singular due to **soft & collinear photons**
 - \rightarrow need real photon bremsstrahlung + redefinition of quark PDF at $\mathcal{O}(\alpha)$
- diagrams singular due to **soft & collinear gluons**

 \rightarrow need real gluon bremsstrahlung at $\mathcal{O}(\alpha_s^2 \alpha)$

 \rightarrow need redefinition of quark PDF at $\mathcal{O}(\alpha_s)$

$\tilde{q}\tilde{q}^*$ Production – IR Singularities

- diagrams singular due to **soft & collinear photons**
 - \rightarrow need real photon bremsstrahlung + redefinition of quark PDF at $\mathcal{O}(\alpha)$
- diagrams singular due to soft & collinear gluons

$$\begin{pmatrix} \gamma, Z \\ \downarrow \\ g \\ g \\ \downarrow \\ g \\$$

 \rightarrow need real gluon bremsstrahlung at $\mathcal{O}(\alpha_s^2 \alpha)$

 \rightarrow need redefinition of quark PDF at $\mathcal{O}(\alpha_s)$

• diagrams singular due to **collinear** $g \rightarrow q\bar{q}$ **splitting**

$$\begin{pmatrix} g \\ \downarrow \\ \neg \sigma \sigma & \bar{q} \end{pmatrix} \bullet \begin{pmatrix} \gamma, Z \\ \neg & \bar{\chi} \\ \neg \sigma \sigma & \bar{q} \end{pmatrix} \bullet \begin{pmatrix} \gamma, Z \\ \neg & \bar{\chi} \\ \neg \sigma \sigma & \bar{q} \end{pmatrix}$$

 \rightarrow need redefinition of quark PDF at $\mathcal{O}(\alpha_s)$

Numerical Results: Hadronic Cross Sections II

$\tilde{u}_R \tilde{u}_R^*$ prod.:

[Hollik, Mirabella '08]

 \rightarrow total EW contributions grow up to 5-10%

$\tilde{g}\tilde{q}$ production – Real Quark Radiation

• at $\mathcal{O}(\alpha_s^2 \alpha)$: non-zero interference of EW and QCD diagrams!

 \rightarrow many channels & diagrams (but small contributions) some examples for $u\bar{u} \rightarrow \tilde{g}\tilde{u}_L\bar{u}$:

$\tilde{g}\tilde{q}$ production – Real Quark Radiation

• at $\mathcal{O}(\alpha_s^2 \alpha)$: non-zero interference of EW and QCD diagrams!

 \rightarrow many channels & diagrams (but small contributions) some examples for $u\bar{u} \rightarrow \tilde{g}\tilde{u}_L\bar{u}$:

→ on-shell internal particles: insert widths to regularize propagators → in order to avoid double counting: subtract possible resonances

Numerical Results: Hadronic Cross Sections III

[Hollik, Mirabella, MT '08]

$\tilde{g}\tilde{q}$ prod.: Invariant mass distribution

- \rightarrow q γ & qq corrections only moderate
- $\rightarrow \tilde{g}\tilde{q}_L$ prod.: EW contrib's grow **up to 5-10%** $\tilde{g}\tilde{q}_L$ prod.: EW contrib's negligible

Total Cross Sections for SPS1a'

final state	$\sigma^{LO} \mathcal{O}(lpha_s^2)$	$\Delta \sigma^{NLO} \mathcal{O}(lpha_s^2 lpha)$	$\sigma^{\gamma g/\gamma q} \mathcal{O}(lpha_{s} lpha)$	$\sigma^{EW,LO}$ $\mathcal{O}(\alpha^2 + \alpha_s \alpha)$	$\delta = \frac{\sigma^{\text{NLO}} - \sigma^{\text{LO}}}{\sigma^{\text{LO}}}$
$\tilde{t}_1 \tilde{t}_1^*$	2670 fb	−22 fb	38 fb	1.2 fb	0.6%
$ ilde{u}_R ilde{u}_R^*$	370 fb	-3.1 fb	5.2 fb	-13 fb	2.6%
$ ilde{u}_L ilde{u}_L^*$	310 fb	_11 fb	4.4 fb	_15 fb	-7.0%
$ ilde{g} ilde{u}_{R}+ ilde{g} ilde{d}_{R}$	10820 fb	9.8 fb	5.3 fb	_	0.1%
${ ilde g} { ilde u}_{\!L} + { ilde g} { ilde d}_{\!L}$	10010 fb	–248 fb	4.9 fb	—	-2.4%
ĝq	17120 fb	—183 fb	9.8 fb	_	-1.0%

 $[\mu_F = \mu_R = \text{central}, \text{MRST 2004 QED}, m_t = 170.9 \text{ GeV}; m(\tilde{t}_1) = 360 \text{ GeV}, m(\tilde{u}_R) = 543 \text{ GeV}, m(\tilde{d}_R) = 539 \text{ GeV}, m(\tilde{u}_L) = 561 \text{ GeV}, m(\tilde{d}_L) = 566 \text{ GeV}, m(\tilde{g}) = 609 \text{ GeV}]$

[$\tilde{g}\tilde{q}$: production of anti-squarks and of squarks of 2nd generation included (differing only in PDF)]

Summary

- Exciting times ahead: SUSY will be probed at the LHC
 Squarks and gluinos will be produced at a very high rate
- QCD corrections already well known, missing EW NLO corrections: for *t̃t**, *q̃q**, and *g̃q* completed, for *g̃g* and *q̃q* in preparation
- EW contributions have a rich structure
 - \rightarrow **EW tree-level** and EW-QCD interference contributions
 - → non-zero **photon PDF** opens important production channel
 - \rightarrow QCD-type corrections enter at $\mathcal{O}(\alpha_s^2 \alpha)$
- **EW contributions** to the total cross section are small, but **important in distributions**

Backup

Numerical Results: Input Parameters

- SPA convention: SUSY parameters defined in DR scheme here: (s)particles renormalized on-shell
 - \rightarrow need consistent set of on-shell input parameters
 - \rightarrow translation $\overline{DR} \rightarrow OS$ required:

$$m_{\overline{\rm DR}}^2 + \delta m_{\overline{\rm DR}}^2 = m_{\rm OS}^2 + \delta m_{\rm OS}^2$$

 SU(2) invariance: soft-breaking parameter m_{Q̃} identical for up- and down-type squarks

 \rightarrow fourth squark is dependent, receives mass corrections

$$(m_{\tilde{d}_L}^2)^{1100p} = (m_{\tilde{d}_L}^2)^{dep.} + \delta m_{\tilde{d}_L}^2 - \Re \Sigma_{\tilde{d}_{LL}}(m_{\tilde{d}_L}^2)$$

• Within the **SPS1a**' scenario, the physical masses are

$$egin{aligned} m_{ ilde{u}_R} &= 543 \; {
m GeV}, \quad m_{ ilde{u}_L} &= 561 \; {
m GeV}, \quad m_{ ilde{d}_R} &= 539 \; {
m GeV}, \ m_{ ilde{d}_L} &= 566 \; {
m GeV}, \quad m_{ ilde{g}} &= 609 \; {
m GeV}, \quad m_{ ilde{t}_1} &= 360 \; {
m GeV}. \end{aligned}$$

SUSY Parameter Dependence

 $\tilde{t}_1 \tilde{t}_1^*$ prod.:

• Relative corrections δ with respect to total born cross section ($gg + q\bar{q}$),

stop mass $m(\tilde{t}_1)$ varied around SPS 1a' value, all other parameters fixed

• moderate contributions, at percent level

 thresholds in top-squark wave function renormalization

 $\tilde{t}\tilde{t}^*$

[Hollik, Kollar, MT '08]

SUSY Parameter Dependence II

[Hollik, Mirabella, MT '08]

ĝq

 $\tilde{g}\tilde{q}$ prod.:

Numerical Results: Hadronic Cross Sections IV

[Hollik, Kollar, MT '08]

Numerical Results: Hadronic Cross Sections V

$\tilde{u}_R \tilde{u}_R^*$ prod.: $p_T(\tilde{g})$ distribution

[Hollik, Mirabella '08]

 $\tilde{u}_L \tilde{u}_L^*$ prod.: $p_T(\tilde{g})$ distribution

Numerical Results: Hadronic Cross Sections VI

[Hollik, Mirabella, MT '08]

$\tilde{g}\tilde{q}$ prod.: $p_T(\tilde{g})$ distribution

$\tilde{q}\tilde{q}^*$ prod.: different flavors

Squark- antisquark production \rightarrow similar plus s-channel diagrams.

$\tilde{t}\tilde{t}^*$ prod.: Real Quark Radiation at $\mathcal{O}(\alpha_s^2\alpha)$

EW diagrams:

QCD diagrams:

Experimental Searches

→ until now: agreement between data and SM expectations

 \rightarrow comparison of exp. limits & theor. cross sections: restrictions on SUSY parameter space