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Outline

Use properties of the perturbative xsection  and 
utilize the distribution in the eta phi plane...

When the mass distribution is not enough...

Distinguishing Hadronic Top Decays (Top Jets)
from Light quark Jets

Jet Mass Distribution

(Jet Substructure)



Distinguishing Hadronic Top Decays

What happens when top decay is Highly boosted ?

Final states become highly collimated 

Top peak in jet mass ?

Focus on Top Jet Mass Distribution.

from Light quark Jets

Top Decay



Top Jets @ the LHC

Counting in the mass window, seems hopeless…
S/B ∼ 10

−2

10pb 100fb

PT > 1000GeV R = 0.4For  jets with 

tt̄ + Xjj + X

m
2

J =

(

∑

i∈R

Pi

)2

R2 = (∆η)2 + (∆φ)2

Top Mass Window: 140 ≤ mJ ≤ 210 GeV

Need to Study the Background...

Mass Tag; Ilustrate with a  Cone jet



This x-section factorizes

Jet Production:

the QCD jet background analytically as well as through MC simulations. In this section,
we present the summary of our analytic calculations of the QCD jet mass distribution
based on the factorization formalism [39, 40], which is presented in the Appendix. We
compare our theoretical prediction with simulated MC data. Note that the final states,
which induce the jet masses, simulated by MC event generators are much more complicated
(due to radiation, showering etc.) than our simple two body final states. Yet, as we shall
see, we can consistently describe the simulated MC data.

3.1 Analytic Prediction

We are interested in looking at the following processes:

Ha(pa) + Hb(pb) → J1(m
2
J1

, p1,T , R) + X

Ha(pa) + Hb(pb) → J1(m
2
J1

, p1,T , R) + J2(m
2
J2

, p2,T , R) + X

where, Hi are the initial hadrons, pi being the corresponding momenta, and the final states
include jets in the direction of the outgoing partons of the underlying process, with a fixed
jet mass, mJi

, “cone size” R2 = ∆η2 + ∆φ2 and tranverse momenta, pi,T .

We begin with the factorized hadronic cross section for single inclusive jet processes,

dσHAHB→J1X(R)

dpT dmJdη
=

∑

abc

∫

dxa dxb φa(xa) φb(xb)
dσ̂ab→cX

dpTdmJdη
(xa, xb, pT , η, mJ , R) ,

(3.1)

which in the limit of small R, we can further factorize into (see Appendix B),

dσHAHB→J1X(R)

dpT dmJdη
=

∑

abc

∫

dxa dxb φa(xa) φb(xb)Hab→cX(xa, xb, pT , η, R)

×Jc
1(mJ , pT , R). (3.2)

The factorization and renormalization scales are chosen to be pT , φi is the PDF for the initial
hadrons, Hab→cX denotes the perturbative cross section, and Jc denotes jet functions, whose
matrix elements are defined in Appendix A (see e.g. [41] for recent reviews and references
therein). Furthermore the Jcs are, by definition, normalized as

∫

dmJ Jc = 1 . (3.3)

We have used the fact that the jet functions do not depend on η in the leading expansion
(see Appendix A). Therefore, we can write Eq. (3.2) for the hadronic cross section as

dσ(R)

dpT dmJ
=

∑

c

Jc(mJ , pT , R)
dσ̂c(R)

dpT
, (3.4)

7

the QCD jet background analytically as well as through MC simulations. In this section,
we present the summary of our analytic calculations of the QCD jet mass distribution
based on the factorization formalism [39, 40], which is presented in the Appendix. We
compare our theoretical prediction with simulated MC data. Note that the final states,
which induce the jet masses, simulated by MC event generators are much more complicated
(due to radiation, showering etc.) than our simple two body final states. Yet, as we shall
see, we can consistently describe the simulated MC data.

3.1 Analytic Prediction

We are interested in looking at the following processes:

Ha(pa) + Hb(pb) → J1(m
2
J1

, p1,T , R) + X

Ha(pa) + Hb(pb) → J1(m
2
J1

, p1,T , R) + J2(m
2
J2

, p2,T , R) + X

where, Hi are the initial hadrons, pi being the corresponding momenta, and the final states
include jets in the direction of the outgoing partons of the underlying process, with a fixed
jet mass, mJi

, “cone size” R2 = ∆η2 + ∆φ2 and tranverse momenta, pi,T .

We begin with the factorized hadronic cross section for single inclusive jet processes,

dσHAHB→J1X(R)

dpT dmJdη
=

∑

abc

∫

dxa dxb φa(xa) φb(xb)
dσ̂ab→cX

dpTdmJdη
(xa, xb, pT , η, mJ , R) ,

(3.1)

which in the limit of small R, we can further factorize into (see Appendix B),

dσHAHB→J1X(R)

dpT dmJdη
=

∑

abc

∫

dxa dxb φa(xa) φb(xb)Hab→cX(xa, xb, pT , η, R)

×Jc
1(mJ , pT , R). (3.2)

The factorization and renormalization scales are chosen to be pT , φi is the PDF for the initial
hadrons, Hab→cX denotes the perturbative cross section, and Jc denotes jet functions, whose
matrix elements are defined in Appendix A (see e.g. [41] for recent reviews and references
therein). Furthermore the Jcs are, by definition, normalized as

∫

dmJ Jc = 1 . (3.3)

We have used the fact that the jet functions do not depend on η in the leading expansion
(see Appendix A). Therefore, we can write Eq. (3.2) for the hadronic cross section as

dσ(R)

dpT dmJ
=

∑

c

Jc(mJ , pT , R)
dσ̂c(R)

dpT
, (3.4)

7

LA, Lee, Perez, Sung & Virzi

QCD Jet Mass Background, Theory

pdf ’s

Jet functions

Hard

the QCD jet background analytically as well as through MC simulations. In this section,
we present the summary of our analytic calculations of the QCD jet mass distribution
based on the factorization formalism [39, 40], which is presented in the Appendix. We
compare our theoretical prediction with simulated MC data. Note that the final states,
which induce the jet masses, simulated by MC event generators are much more complicated
(due to radiation, showering etc.) than our simple two body final states. Yet, as we shall
see, we can consistently describe the simulated MC data.

3.1 Analytic Prediction

We are interested in looking at the following processes:

Ha(pa) + Hb(pb) → J1(m
2
J1

, p1,T , R) + X

Ha(pa) + Hb(pb) → J1(m
2
J1

, p1,T , R) + J2(m
2
J2

, p2,T , R) + X

where, Hi are the initial hadrons, pi being the corresponding momenta, and the final states
include jets in the direction of the outgoing partons of the underlying process, with a fixed
jet mass, mJi

, “cone size” R2 = ∆η2 + ∆φ2 and tranverse momenta, pi,T .

We begin with the factorized hadronic cross section for single inclusive jet processes,

dσHAHB→J1X(R)

dpT dmJdη
=

∑

abc

∫

dxa dxb φa(xa) φb(xb)
dσ̂ab→cX

dpTdmJdη
(xa, xb, pT , η, mJ , R) ,

(3.1)

which in the limit of small R, we can further factorize into (see Appendix B),

dσHAHB→J1X(R)

dpT dmJdη
=

∑

abc

∫

dxa dxb φa(xa) φb(xb)Hab→cX(xa, xb, pT , η, R)

×Jc
1(mJ , pT , R). (3.2)

The factorization and renormalization scales are chosen to be pT , φi is the PDF for the initial
hadrons, Hab→cX denotes the perturbative cross section, and Jc denotes jet functions, whose
matrix elements are defined in Appendix A (see e.g. [41] for recent reviews and references
therein). Furthermore the Jcs are, by definition, normalized as

∫

dmJ Jc = 1 . (3.3)

We have used the fact that the jet functions do not depend on η in the leading expansion
(see Appendix A). Therefore, we can write Eq. (3.2) for the hadronic cross section as

dσ(R)

dpT dmJ
=

∑

c

Jc(mJ , pT , R)
dσ̂c(R)

dpT
, (3.4)

7

for small R 

Contributions from initial state radiation
 to Jet mass

+O(R2)

(Berger, Kucs, Sterman)

∼ R
2

(due to “light” jets)



QCD Jet Mass distribution

Leading Contribution: Single Gluon Emission
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log
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T R2
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Jet Functions

Quarks jets

Gluons jets

Appendix

A Jets at Fixed Invariant Mass

Here we give details of the definitions and calculations for the jet functions that we employ
in section 3. Single inclusive Jet cross sections have been studied intensively [38, 46, 47, 48].
Here, we are interested in computing the QCD background to jets of measured mass. The
main background to the production of tt̄ pairs is from dijet production from hadronic
collisions,

Ha(pa) + Hb(pb) → J1(m
2
J1

, p1,T , η1, R) + J2(m
2
J2

, p2,T , η2, R) + X, (A.1)

where the final states are jets in the directions of the outgoing partons, each with a fixed jet
mass m2

J , a “cone size” R2 = ∆η2 +∆φ2, and transverse momenta, pi,T . For simplicity we
choose the cone sizes equal for the two jets, although they can be different. For R < 1, we
can isolate the leading (R0) dependence of such cross-sections in factorized “jet” functions,

dσHAHB→J1J2

dpT dm2
J1

dm2
J2

dη1dη2
=

∑

abcd

∫

dxa dxb φa(xa) φb(xb)Hab→cd (xa, xb, pT , η1, η2, αS(pT ))

×Jc
1(m

2
J1

, pT cosh η1, R, αS(pT )) Jd
2 (m2

J2
, pT cosh η2, R, αS(pT )),

(A.2)

with corrections that vanish as powers of R. Here the φ’s are parton distribution functions
for the initial hadrons, Hab→cd is a perturbative 2 → 2 QCD hard-scattering function,
equal to the dijet Born cross section at lowest order, and the Ji are jet functions, which are
defined below. Jet function Ji summarizes the formation of a set of final state particles with

fixed invariant mass and momenta collinear to the ith outgoing parton. Corrections to the
cross section of order R0 can only occur through collinear enhancements which factorize
into these functions [49].

Following Ref. [40] we define jet function for quarks at fixed jet mass by

Jq
i (m2

J , p0,Ji
, R) =

(2π)3

2
√

2 (p0,Ji
)2

ξµ

Nc

∑

NJi

Tr
{

γµ〈0|q(0)Φ(q̄)†
ξ (∞, 0)|NJi

〉〈NJi
|Φ(q̄)

ξ (∞, 0)q̄(0)|0〉
}

×δ
(

m2
J − m̃2

J (NJi
, R)

)

δ(2)(n̂ − ñ(NJi
))δ(p0,Ji

− ω(NJc)), (A.3)

where m̃2
J(NJi

, R) is the invariant mass of all particles within the cone centered on direction
n̂ in state NJi

. Correspondingly, gluon jet functions are defined by

Jg
i (m2

J , p0,Ji
, R) =

(2π)3

2(p0,Ji
)3

∑

NJi

〈0|ξσF
σν(0)Φ(g)†

ξ (0,∞) |NJi
〉〈NJi

|Φ(g)
ξ (0,∞)F ρ

ν (0)ξρ|0〉

×δ
(

m2
J − m̃2

J(NJi
, R)

)

δ(2)(n̂ − ñ(NJi
))δ(p0,Ji

− ω(NJc)). (A.4)
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Quark Jet Function, in detail...
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Figure 19: Feynman rules associated with the F+ν operator at the end of a Wilson line.

k

ij
!i g t

a,ij

!1

Figure 20: Feynman rules associated with eikonal lines, from the expansion of the Wilson
lines.

(a) (b) (c)

Figure 21: Real contributions to the quark jet function at order αS.
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where we choose k to represent the gluon and p the quark. For k the softer momentum, we
easily see that θk ≥ θp. Therefore, p0 = k0 fixes the minimum angle for the softest particle,
and we find cos(θS,min) = βi. The region ωp < ωk is found by simply interchanging p and
k in |M(p, k)|2 so that

Jq(1)
i (m2

J , p0,Ji
, R) =

βi

16
√

2

∫ βi

cos(R)

d cos θS

(2π)2

m2
Ji

/p2
0,J

(

2(1 − βi cos θS) −
m2

Ji

p2
0,J

)

1

p0,J(1 − βi cos θS)

×
(

|Mqi
(p, k)|2 + |Mqi

(k, p)|2
)

. (A.13)

The evaluation of |Mqi
(p, k)|2 is straightforward from the diagrams of Fig. 21, and we find

Jq(1)
i (m2

J , p0,Ji
, R) =

CFβi

4m2
Ji

∫ βi

cos(R)

d cos θS

π

αS(k0) z4

(2(1 − βi cos θS) − z2) (1 − βi cos θS)
×

{

z2 (1 + cos θS)2

(1 − βi cos θS)

1

(2(1 + βi)(1 − βi cos θS) − z2(1 + cos θS))
+

3(1 + βi)

z2
+

1

z4

(2(1 + βi)(1 − βi cos θS) − z2(1 + cos θS))2

(1 + cos θS)(1 − βi cos θS)

}

,

(A.14)

where z =
mJi

p0,Ji
, p0,Ji

=
√

m2
Ji

+ p2
T , and k0 =

p0,Ji

2
z2

1−βi cos θS
.

The calculation of the gluon jet function proceeds along the same lines, with the
exception that both particles in the final states are now identical, and the presence of the
field strengths, which appear at the end of each Wilson line. The rules for these vertices,
as mentioned before, are shown in Fig. 19. Once again, we can write the gluon jet function
as an integral over the angle of the softer particle,

Jg(1)
i (m2

J , p0,Ji
, R) =

βi

16m2
Ji

∫ βi

cos(R)

d cos θS

(2π)2p2
0,Ji

z2

(2(1 − βi cos θS) − z2) (1 − βi cos θS)
|Mgi

(p, k)|2 ,

(A.15)

where |Mgi
(p, k)|2 is symmetric under the interchange of p and k. We find from the

diagrams shown in Fig. 22, the result

Jg(1)
i (m2

J , p0,Ji
, R) =

CAβi

16m2
Ji

∫ βi

cos(R)

d cos θS

π

αS(k0)

(1 − β cos θS)2(1 − cos2 θS)(2(1 + β) − z2)

×
(

z4(1 + cos θS)2 + z2(1 − cos2 θS)(2(1 + βi) − z2) + (1 − cos θS)2(2(1 + βi) − z2)2
)2

.

(A.16)

These one-loop expressions have been used to generate the comparisons to event generator
output given in Section 3.

40

z = mJ/p0,Ji

βi =

√

1 − z2

θS : Angle between Jet axis and softer particle

k0 =
p0,J

2

z2

1 − βi cos θS
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Gluon Jet function in detail...
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Figure 2: Various theoretical gluon-jet mass distributions, along with a 1/mJ curve, are
plotted for pT = 1 TeV and R = 0.4. Plotted are the jet mass distribution from (A.16)
with running (red, dashed), and fixed (blue, dotted) coupling, along with the eikonal jet
function (green, dashed-dotted) with fixed coupling. For the jet functions with no running
the scales were chosen be pT .

approximation is equivalent to a no recoil approximation, thus resulting overall in a harder
process than the result in Eq. (A.16) at fixed scales.

For the purpose of comparing the mass distributions obtained from jet functions and
the MC simulations, Eq. (3.5) can be matched to (dσc(R)/dpT )MC obtained from MC,
leading to the following relation,

dσc
pred(R)

dpT dmJ
= Jc (mJ , pT , R)

(

dσc (R)

dpT

)

MC

, (3.7)

for the prediction of quark and gluon jet mass distribution based on perturbative calculated
jet functions, Eqs. (A.14) and (A.16). Note, however, that this would require us to split
the MC output in terms of the parton flavours c, which for realistic simulation leads to
ambiguities especially when matching is used. Therefore, for our analysis, instead, we use
the analytic result to suggest bounds for the “data” distribution from the MC. There is,
however, no a posteriori way to determine the flavour which initiated the jet (as with real
data). Thus, we write

dσpred(R)

dpTdmJ upper bound

= Jg (mJ , pT , R)
∑

c

(

dσc (R)

dpT

)

MC

, (3.8)

dσpred(R)

dpT dmJ lower bound

= Jq (mJ , pT , R)
∑

c

(

dσc (R)

dpT

)

MC

, (3.9)
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, (3.7)

for the prediction of quark and gluon jet mass distribution based on perturbative calculated
jet functions, Eqs. (A.14) and (A.16). Note, however, that this would require us to split
the MC output in terms of the parton flavours c, which for realistic simulation leads to
ambiguities especially when matching is used. Therefore, for our analysis, instead, we use
the analytic result to suggest bounds for the “data” distribution from the MC. There is,
however, no a posteriori way to determine the flavour which initiated the jet (as with real
data). Thus, we write

dσpred(R)

dpTdmJ upper bound

= Jg (mJ , pT , R)
∑

c

(

dσc (R)

dpT

)

MC

, (3.8)

dσpred(R)

dpT dmJ lower bound

= Jq (mJ , pT , R)
∑
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(
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)
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, (3.9)
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(sherpa) Di-Jet     tt̄Vs. SMEx:
of magnitude larger than the signal. Once we add detector effects the significance of the
signal is further deteriorated. We conclude that a simple counting method would not be
effective here.
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Figure 10: The jet mass distributions for the tt̄ and QCD jet samples. The plots on the
top row correspond to a pT

lead ≥ 1000 GeV. The plots on the bottom row correspond
to a pT

lead ≥ 1500 GeV. The plots on the left correspond to R = 0.4; the plots on the
right correspond to R = 0.7. The theoretical bounds, Eq. (3.10), are also plotted. These
numbers are tabulated in table 3.

5.2.1 Detector Effects

Here, we repeat the truth-level procedure from above, accounting for the leading effects
of detector resolution and ±5% jet energy scale. We also tabulate the relative change in
acceptance of the signal and background, due to detector resolution and energy scale, which
we define as

∆JES =
NJES − NTRUTH

NTRUTH
, (5.20)

where NJES is the number of events passing the selection criteria after detector smearing
and JES effects have been applied. These results are tabulated in table 4, which shows
how the signal and background are affected differently by smearing effects. We see that the
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τa =
1
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∑

i

ωi sina

(
πθi

2R

) [
1− cos
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πθi
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)]1−a

(C. Berger, T. Kucs, G. Sterman ’03)
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Summary
Jet functions provide a systematic approach to  

describe the jet mass background (small R)

A  Careful understanding of the substructure of 
Background and Signal allows us to develop 
observables that are “tuned” to our signal

Planarity Effects in QCD light jets appear at NLO 
in Jet Mass Distrib.  (as^4)
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Top jets collimate @ high PT 

∆R ∼ 2mT /pT

Almeida, Lee, GP,  Sung & Virzi.

 Boosted top jets & collimation   

R2 = (∆η)2 + (∆φ)2
p
min
T

< R >

R ∼ 2mJ/pT

Cone Size:

PT vs. <R> on Top



summary, the results of the transfer function should be viewed simply as realistic detector
smearing.

In this paper, a jet is transferred as follows. The transverse momentum and mass of
truth-level jets are smeared according to the appropriate distribution. For the purposes of
modeling the effects of the JES, the means of the pT distributions are shifted accordingly,
without cross correlation to the mass smearing. This is a subtle point. Depending on the
reconstruction mechanism, reported jet masses may depend proportionally on the JES; a
JES shift results in a jet mass shift. In our study of the effects of the JES, we do not make
a correlation between the pT and mass distributions. This effect is much smaller, and such
precision is not warranted in these studies.
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Figure 1: We compare the mass distribution of the leading jet
(

pT
lead ≥ 1000 GeV

)

for the
tt̄ signal with (the red dotted curve) and without (the black solid curve) leading detector
effects. The plot on the left corresponds to C4 jets; the plot on the right corresponds to
C7 jets.

In Fig. 1, we compare the tt̄ jet mass distributions for C4 and C7 jets, with and without
detector smearing, for pT

lead ≥ 1000 GeV. We see, as expected, that due to the finite cone
size even the top jet mass distribution is far from the naive Breit-Wigner shape. In cases
where the outgoing b quark is outside the cone, we expect that the top jet mass to be
peaked around the W mass. In cases where one of the quarks from the W decay is outside
the cone we expect a smooth distribution with a typical invariant mass of roughly mt/

√
2,

etc. These effects are present even at the truth level, without detector effects. The black
curve shows a smooth distribution with a spurious peak around the W mass. The red curve
demonstrates how the detector effects further smear the top jet mass distribution.

3 QCD Jet Background

If jet mass methods are to be viable, we must be able to characterize the dominant QCD jet
background [38]. One of the primary points in this work is that we are able to understand

6

Small cone losses signal
Sherpa (CKKW) +Transfer fcns +JES

R=0.4

Top Jet Mass Distribution


