## ON-SHELL METHODS FOR ONE-LOOP AMPLITUDES Darren Forde (SLAC)

In collaboration with C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, T. Gleisberg, D. Maitre, H. Ita \& D. Kosower.

## OVERVIEW

- We want one-loop amplitudes to produce NLO corrections for LHC processes.
- Automate the computation of these terms, BlackHat.
- On-shell recursion relations.
- Generalised unitarity techniques in 4 dimensions.
- Rational extraction - Uses generalised unitarity techniques in D-dimensions.
- Full W+3 jets at NLO including the sub-leading terms.


## AUTOMATION

We want to go from


## AUTOMATION



## NEWTECHNIQUES

- Feynman diagrams have a factorial growth in the number of terms, particularly bad for large numbers of gluons.

- Calculated Amplitudes much simpler than expected. e.g.



## NEWTECHNIQUES

- Feynman diagrams have a factorial growth in the number of terms, particularly bad for large numbers of gluons.


Want to use on-shell quantities. Avoid large cancellations due to gauge dependance.

- Calculated Amplitudes much simpler than expected. e.g.



## WHAT HAS BEEN DONE?

- Many important 5 processes have been computed using Feynman diagram approaches, including pp $\rightarrow$ vector bosons, quarks, Higgs, etc. (Jäger, Oleari, Zeppenfeld, Bozzi, Ciccolini, Denner, Dittmaier, Campbell, Ellis, Zanderighi, Ciccolini, Figy, Hankele, Zeppenfeld, Beenakker, Krämer, Plümper, Spira, Zerwas, Dawson, Jackson, Reina, Wackeroth, Lazopoulos, Petriello, Melnikov, McElmurry, Campanario, Prestel, Kallweit, Uwer, Febres Cordero, Weinzierl, Bredenstein, Pozzorini).
- Limited 6 point results. (e.g. Bredenstein, Denner, Dittmaier, Pozzorini).
- Usually require new techniques.


## WHAT HAS BEEN DONE?

Les Houches "wish list", (2007)

- Many i Feynm quarks Campbell Plümper, Melnikov, Bredenst

- Usually require new techniques.

W case computed by BlackHat+SHERPA. (Pieces
computed by (Ellis, Menlikov, Zanderighi))

## AUTOMATEDTOOLS

- Let the computer(s) do the hard work!
- New generation of automated tools based on new methods.
- BlackHat - W+3 jet NLO computation (with SHERPA). (Berger, Bern, Dixon, DF, Febres Cordero, Gleisberg, Maitre, Ita, Kosower)
- Rocket - Partial W+3 jet NLO computation. (Ellis, Melnikov,Zanderighi), (Ellis, Giele, Melnikov, Kunszt, Zanderighi)
- Cuttools - pp $\rightarrow$ VVV at NLO. A number of "wish-list" amplitudes. (van Hameren, Papadopoulos, Pittau), (Ossola, Papadopoulos, Pittau)
- Other amplitude level codes (Giele, Winter), (Lazopoulos), (Schulze)


## THE COMPLEX PLANE

- A key feature of new developments has been the use of complex momenta.
- Benefits
- Define a non-zero on-shell three-point function.
- Build all amplitudes from just this term (in general not clear from the Lagrangian).
- Take better advantage of analytic properties of amplitudes.


## AMPLITUDES \& POLES

- An amplitude is a function of its external momenta (\& helicity)

$$
A_{n}\left(k_{1}^{h_{1}}, k_{2}^{h_{2}}, \ldots, k_{i}^{h_{i}}, \ldots, k_{j}^{h_{j}}, \ldots, k_{n}^{h_{n}}\right)
$$

- Shift the momenta of two external legs so they become complex. (Britto, Cachazo, Feng, Witten)
- Keeps both legs on-shell.
- Conserves Momentum.
- Turns physical poles of the amplitude into poles in $z$.


## AMPLITUDES \& POLES

- An amplitude is a function of its external momenta (\& helicity)

$$
\begin{gathered}
\left.A_{n}\left(k_{1}^{h_{1}}, k_{2}^{h_{2}}, \ldots, k_{i}^{h_{i}}, \ldots, k_{j}^{h_{j}}\right) \ldots, k_{n}^{h_{n}}\right) \\
k_{i}^{\mu} \rightarrow k_{i}^{\mu}(z)=k_{i}^{\mu}-\frac{z}{2}\left\langle i^{-}\right| \gamma^{\mu}\left|j^{-}\right\rangle, k_{j}^{\mu} \rightarrow k_{j}^{\mu}(z)=k_{j}^{\mu}+\frac{z}{2}\left\langle i^{-}\right| \gamma^{\mu}\left|j^{-}\right\rangle
\end{gathered}
$$

- Shift the momenta of two external legs so they become complex. (Britto, Cachazo, Feng, witten)
- Keeps both legs on-shell.
- Conserves Momentum.
- Turns physical poles of the amplitude into poles in $z$.


## AMPLITUDES \& POLES

- An amplitude is a function of its external momenta (\& helicity)

$$
\begin{gathered}
\left.A_{n}\left(k_{1}^{h_{1}}, k_{2}^{h_{2}}, \ldots, k_{i}^{h_{i}}, \ldots, k_{j}^{h_{j}}\right) \ldots, k_{n}^{h_{n}}\right) \\
k_{i}^{\mu} \rightarrow k_{i}^{\mu}(z)=k_{i}^{\mu}-\frac{z}{2}\left\langle i^{-}\right| \gamma^{\mu}\left|j^{-}\right\rangle, k_{j}^{\mu} \rightarrow k_{j}^{\mu}(z)=k_{j}^{\mu}+\frac{z}{2}\left\langle i^{-}\right| \gamma^{\mu}\left|j^{-}\right\rangle
\end{gathered}
$$

- Shift the momenta of two external legs so they become complex. (Britto, Cachazo, Feng, witten)
- Keeps both legs on-shell.
- Conserves Momentum.

Only possible with complex momenta

- Turns physical poles of the amplitude into poles in $z$.


## A SIMPLE IDEA


$A(0)$ the amplitude we want, with real momentum


On-shell recursion

$$
A_{n}(0)=-\sum_{\text {poles }} \operatorname{Res}_{\mathrm{z}} \frac{A_{n}(z)}{z}
$$



## ONE-LOOP AMPLITUDES

- Split one-loop structure into rational and cut parts.

- Cut terms contain branch cuts.
- Rational terms contain only poles, split into two kinds (Bem, Dixon, Kosower)
- Factorising poles, appear in the complete result.
- Spurious poles (cancel with the cut terms).


## POLES \& RATIONALTERMS

- Branch cuts give the cut terms, compute separately and subtract out.

- Spurious poles cancel against poles in the cut terms.
- Compute by extracting residue of spurious pole from cut.
- Recursive poles from complex factorisation. (Berger, Bern, Dixon, DF, Kosower), (Berger, Bern, Dixon, DF, Febres Cordero, Ita, Maitre, Kosower)


## POLES \& RATIONALTERMS

- Branch cuts give the cut terms, compute separately and subtract out.

- Spurious poles cancel against poles in the cut terms.
- Compute by extracting residue of spurious pole from cut.
- Recursive poles from complex factorisation. (Berger, Bern, Dixon, DF, Kosower), (Berger, Bern, Dixon, DF, Febres Cordero, Ita, Maitre, Kosower)


## POLES \& RATIONALTERMS

- Branch cuts give the cut terms, compute separately and subtract out.

- Spurious poles cancel against poles in the cut terms.
- Compute by extracting residue of spurious pole from cut.
- Recursive poles from complex factorisation. (Berger, Bern, Dixon, DF, Kosower), (Berger, Bern, Dixon, DF, Febres Cordero, Ita, Maitre, Kosower)


## POLES \& RATIONALTERMS

- Branch cuts give the cut terms, compute separately and subtract out.

- Spurious poles cancel against poles in the cut terms.
- Compute by extracting residue of spurious pole from cut.
- Recursive poles from complex factorisation. (Berger, Bern, Dixon, DF, Kosower), (Berger, Bern, Dixon, DF, Febres Cordero, Ita, Maitre, Kosower)


## POLES \& RATIONALTERMS

- Branch cuts give the cut terms, compute separately and subtract out.

- Spurious poles cancel against poles in the cut terms.
- Compute by extracting residue of spurious pole from cut.
- Recursive poles from complex factorisation. (Berger, Bern, Dixon, DF, Kosower), (Berger, Bern, Dixon, DF, Febres Cordero, Ita, Maitre, Kosower)


## CUTS \& UNITARITY

- Use unitarity to compute the cut terms



## CUTS \& UNITARITY

- Use unitarity to compute the cut terms



## BOX COEFFICIENTS

- Generalised unitarity, cut the loop more than two times.
- Quadruple cuts freezes the box integral. (Britto, Cachazo, Feng)


No free components in $l^{\mu}$, fixed by 4 constraints in 4 dimensions.


Generally requires complex momenta

## DIRECT EXTRACTION

- Triple cut isolates a single triangle coefficient. (DF)



## DIRECT EXTRACTION

- Triple cut isolates a single triangle coefficient. (DF)



## DIRECT EXTRACTION

- Triple cut isolates a single triangle coefficient. (DF)



## DIRECT EXTRACTION

- Triple cut isolates a single triangle coefficient. (DF)



## SUBTRACTING POLES

- Numerically taking large $t$ limit is difficult.
- Subtract box poles from triple cut, (computed from quadruple


$$
\begin{aligned}
\oint T_{3}(t)= & \oint \frac{C_{-3}}{t^{3}}+\frac{C_{-2}}{t^{2}}+\frac{C_{-1}}{t}+C_{0}+t C_{1}+t^{2} C_{2}+t^{3} C_{3} \\
& +\sum_{i, \sigma= \pm} \frac{d_{i}^{\sigma}}{\xi_{i}^{\sigma}\left(t-t_{i}^{\sigma}\right)}
\end{aligned}
$$

- Compute $C_{0}$ from discrete Fourier projection.
- Alternative approach, solve for all coefficients. (Ossola, Papadopoulos, Pittau), (Ellis, Giele, Kunszt)


## SUBTRACTING POLES

- Numerically taking large $t$ limit is difficult.
- Subtract box poles from triple cut, (computed from quadruple


$$
\oint T_{3}(t)=\oint \frac{C_{-3}}{t^{3}}+\frac{C_{-2}}{t^{2}}+\frac{C_{-1}}{t}+C_{0}+t C_{1}+t^{2} C_{2}+t^{3} C_{3}
$$

- Compute $C_{0}$ from discrete Fourier projection.
- Alternative approach, solve for all coefficients. (Ossola, Papadopoulos, Pittau), (Ellis, Giele, Kunszt)


## SUBTRACTING POLES

- Numerically taking large $t$ limit is difficult.
- Subtract box poles from triple cut, (computed from quadruple | cuts). $\bullet$ | $\bullet$ |  |  |
| :---: | :--- | :--- | :--- |
| $\bullet$ | $\bullet$ | $\bullet$ | $\bullet$ |
| $\bullet$ |  |  |  |
- Compute $C_{0}$ from discrete Fourier projection.
- Alternative approach, solve for all coefficients. (Ossola, Papadopoulos, Pittau), (Ellis, Giele, Kunszt)


## REVIIITING THE RATIONAL TERMS

- Cuts in 4 dimensions miss the rational terms.
- Perform cuts in D-Dimensions, $D=4-2 \varepsilon$.
- Introduces branch cuts for rational terms.
- Can compute the rational terms from just trees.
- Two approaches,
- Work "masslessly" in more than 4 dimensions. (Giele, Kunszt, Meniniov), (Giele, Winter)
- Work in 4 dimensions with a D-Dimensional "mass". (Bern, Morgan), (Badger), (Ossola, Papadopoulos, Pittau), (Draggiotis, Garzelli, Papadopoulos, Pittau), (Anastasiou, Britto, Feng, Kunszt, Mastrolia)


## D-DIMENSIONAL UNITARITY

- Relate higher dimensional approach to massive approach by decomposing D-Dimensional loop momenta,

$$
l^{v}=\bar{l}^{v}+\mu \tilde{l}^{v}
$$

- Need only massive part after splitting up the D-Dimensional loop contributions (in FDH scheme)


## D-DIMENSIONAL UNITARITY

- Relate higher dimensional approach to massive approach by decomposing D-Dimensional loop momenta, Massless D dim momenta $\rightarrow l^{v}=\bar{l}^{v}+\mu \tilde{l}_{R}^{v}$

Massive $\left(\mu^{2}\right) 4$ dim momenta orthogonal $D>4$ dimensional momenta - Need only massive part after splitting up the D-Dimensional loop contributions (in FDH scheme)

## D-DIMENSIONAL UNITARITY

- Relate higher dimensional approach to massive approach by decomposing D-Dimensional loop momenta, Massless D dim momenta $\rightarrow l^{v}=\bar{l}^{v}+\mu \tilde{l}_{R}^{v}$

Massive ( $\mu^{2}$ ) 4 dim momenta orthogonal $D>4$ dimensional momenta - Need only massive part after splitting up the D-Dimensional loop contributions (in FDH scheme) e.g. for a gluon loop


Massless D-dim gluon

Massless gluon Massive scalar


## D-DIMENSIONAL UNITARITY

- Relate higher dimensional approach to massive approach by decomposing D-Dimensional loop momenta, Massless D dim momenta $\rightarrow l^{v}=\bar{l}^{v}+\mu \tilde{l}_{R}^{v}$

Massive ( $\mu^{2}$ ) 4 dim momenta orthogonal $D>4$ dimensional momenta - Need only massive part after splitting up the D-Dimensional loop contributions (in FDH scheme) e.g. for a gluon loop


## ISOLATING THE RATIONALTERMS

- Similar rule for quarks, replace a massless D-Dimensional quark with a massive 4 dimensional quark.

- Mixed gluon/quark loops are replaced by mixed massive scalar/ quark loops



## NEW INTEGRAL BASIS

- In D-Dimensions the coefficients of the basis integrals pick up a D-Dimensional mass, $\mu$, dependance.


Can now have pentagon contributions


## RATIONALTERMS FROM COEFFICIENTS

- Rational terms from mass dependant parts of the coefficients, e.g. triangle

- Only even powers of $\mu^{2}$, max power related to max tensor power of $l^{\mu}$, e.g. 4 for a box, 2 for a triangle.


## RATIONALTERMS FROM COEFFICIENTS

- Rational terms from mass dependant parts of the coefficients, e.g. triangle


Extract the coefficient of this integral in the same way as the cut terms

Integral gives finite contribution when $\varepsilon \xrightarrow{0}$, e.g. $I_{3}^{4-2 \varepsilon}\left[\mu^{2}\right] \xrightarrow{\varepsilon \rightarrow 0}-\frac{1}{2}$

- Only even powers of $\mu^{2}$, max power related to max tensor power of $l^{\mu}$, e.g. 4 for a box, 2 for a triangle.


## RATIONAL EXTRACTION

- Could use large parameter behaviour to extract coefficients, numerically unstable. (Badger)
- Subtract poles and perform discrete Fourier projection in $\mu^{2}$ (in addition to the 4 dimensional cut parameters, e.g. t)


For a box subtract the pentagons, for the triangle subtract the boxes etc.

## RATIONAL EXTRACTION

- Could use large parameter behaviour to extract coefficients, numerically unstable. (Badger)
- Subtract poles and perform discrete Fourier projection in $\mu^{2}$ (in addition to the 4 dimensional cut parameters, e.g. t)


For a box subtract the pentagons, for the triangle subtract the boxes etc.

## RATIONAL EXTRACTION

- Could use large parameter behaviour to extract coefficients, numerically unstable. (Badger)
- Subtract poles and perform discrete Fourier projection in $\mu^{2}$ (in addition to the 4 dimensional cut parameters, e.g. t)


$$
\left(d_{0}+d_{2} \mu^{2}+d_{4}\left(\mu^{2}\right)^{2}\right)
$$

For a box subtract the pentagons, for the triangle subtract the boxes etc.

## RATIONAL EXTRACTION

- Could use large parameter behaviour to extract coefficients, numerically unstable. (Badger)
- Subtract poles and perform discrete Fourier projection in $\mu^{2}$ (in addition to the 4 dimensional cut parameters, e.g. t)



## NUMERICAL ACCURACY

- Want to guarantee the accuracy of our numerical results.
- A number of checks. As an example, a powerful test for the rational terms uses the vanishing of higher tensor coefficients.
- e.g. in the bubble, test how close to zero the coefficient of $\mu^{2} y$ is. Gives a "free" test of the accuracy.
- Re-compute just the coefficient that fails.
- A number of other tests, such as $\mathbb{R}$ poles etc.


## RATIONALTERMS \& BLACKHAT

- Both on-shell recursion and rational extraction approach for rational terms now implemented in BlackHat.
- Fermion \& vector particles, with any number of legs.
- Use the best approach for a particular contribution.
- Rational extraction approach just relies on knowing trees (useful when we don't want to think!)
- On-shell recursion need to know a bit more the amplitude, can be made faster.
- Used to compute sub-leading contributions in new complete $\mathrm{W}+3$ jets result.


## $W+3$ JETS

- Leading Colour gives majority of the contribution,


## On-shell recursion



- Additional contributions for sub-leading colour, these include

Rational
Extraction


## TOTAL CROSS SECTIONS

- For the total cross section at the Tevatron,

| number of jets | CDF | LC NLO | NLO |
| :---: | :---: | :---: | :---: |
| 1 | $53.5 \pm 5.6$ | $58.3_{-4.6}^{+4.6}$ | $57.8_{-4.0}^{+4.4}$ |
| 2 | $6.8 \pm 1.1$ | $7.81_{-0.91}^{+0.54}$ | $7.62_{-0.86}^{+0.62}$ |
| 3 | $0.84 \pm 0.24$ | $0.908_{-0.142}^{+0.044}$ | $0.882(5)_{-0.138}^{+0.057}$ |

- The Leading colour (LC) approximation is very good. Only an $\sim 3 \%$ contribution from the Sub-leading colour.
- Per phase-space point sub-leading is much more demanding, but sample ~ I/20 fewer points for same error as LC.


## EFFECT ON DISTRIBUTIONS



## CLIFFHANGER

- To be continued.... (See H. Ita's and F. Febres
cordero's talks tomorrow)


## CONCLUSIONS

- Implemented rational extraction approach for computing rational terms alongside on-shell recursion within BlackHat.
- Computed the full W+3 jets contributions, including Subleading colour at both the Tevatron and the LHC.
- Small contribution from sub-leading terms to final result, leading colour approximation works well.

