Generalized unitarity

\&

W + 3 jets
Giulia Zanderighi
Oxford Theoretical Physics \& STFC

Based on work done with Keith Ellis, Walter Giele, Zoltan Kunszt, Kirill Melnikov

LoopFest, Madison, May 2009

This talk

I won't explain the method in detail, only remind of the main ideas. I will concentrate on practical aspects: numerical implementation, efficiency, performance, applications \& new results

References:

- Ellis, Giele, Kunszt ’07
- Giele, Kunszt, Melnikov ’08
- Giele \& GZ '08
- Ellis, Giele, Melnikov, Kunszt ’08
- Ellis, Giele, Melnikov, Kunszt, GZ '08
- Ellis, Melnikov, GZ '09

These papers heavily rely on previous work

- Bern, Dixon, Kosower '94
- Ossola, Pittau, Papadopoulos '06
- Britto, Cachazo, Feng '04
- [....]
[Unitarity in $D=4]$
[Unitarity in $D \neq 4]$
[All one-loop N -gluon amplitudes]
[Massive fermions, ttggg amplitudes]
[W+5p one-loop amplitudes]
[W+3 jets]
[Unitarity, oneloop from trees]
[OPP]
[Generalized cuts]

One-loop virtual amplitudes

Cut constructable part can be obtained by taking residues in $D=4$

$$
\mathcal{A}_{N}=\sum_{\left[i_{1} \mid i_{4}\right]}\left(d_{i_{1} i_{2} i_{3} i_{4}} I_{i_{1} i_{2} i_{3} i_{4}}^{(D)}\right)+\sum_{\left[i_{1} \mid i_{3}\right]}\left(c_{i_{1} i_{2} i_{3}} I_{i_{1} i_{2} i_{3}}^{(D)}\right)+\sum_{\left[i_{1} \mid i_{2}\right]}\left(b_{i_{1} i_{2}} I_{i_{1} i_{2}}^{(D)}\right)(+\mathcal{R})
$$

Rational part: can be obtained with $D \neq 4$

Generic D dependence

Two sources of D dependence

dimensionality of loop momentum D

\# of spin eigenstates/ polarization states D_{s}

Keep D and D_{s} distinct

$$
\mathcal{A}^{D} \Rightarrow \mathcal{A}^{\left(D, D_{s}\right)}
$$

Two key observations

I. External particles in $\mathrm{D}=4 \Rightarrow$ no preferred direction in the extra space

$$
\mathcal{N}(l)=\mathcal{N}\left(l_{4}, \tilde{l}^{2}\right) \quad \tilde{l}^{2}=-\sum_{i=5}^{D} l_{i}^{2} \quad \mathcal{N}: \text { numerator function }
$$

or in arbitrary D up to 5 constraints \Rightarrow get up to pentagon integrals

Two key observations

I. External particles in $\mathrm{D}=4 \Rightarrow$ no preferred direction in the extra space

$$
\mathcal{N}(l)=\mathcal{N}\left(l_{4}, \tilde{l}^{2}\right) \quad \tilde{l}^{2}=-\sum_{i=5}^{D} l_{i}^{2} \quad \mathcal{N}: \text { numerator function }
$$

in arbitrary D up to 5 constraints \Rightarrow get up to pentagon integrals
2. Dependence of \mathcal{N} on D_{s} is linear (or almost)

$$
\mathcal{N}^{D_{s}}(l)=\mathcal{N}_{0}(l)+\left(D_{s}-4\right) \mathcal{N}_{1}(l)
$$

evaluate at any $D_{s 1}, D_{s 2} \Rightarrow$ get \mathcal{N}_{0} and \mathcal{N}_{1}, i.e., full \mathcal{N}

Two key observations

I. External particles in $D=4 \Rightarrow$ no preferred direction in the extra space

$$
\mathcal{N}(l)=\mathcal{N}\left(l_{4}, \tilde{l}^{2}\right) \quad \tilde{l}^{2}=-\sum_{i=5}^{D} l_{i}^{2} \quad \mathcal{N}: \text { numerator function }
$$

or in arbitrary D up to 5 constraints \Rightarrow get up to pentagon integrals
2. Dependence of \mathcal{N} on D_{s} is linear (or almost)

$$
\mathcal{N}^{D_{s}}(l)=\mathcal{N}_{0}(l)+\left(D_{s}-4\right) \mathcal{N}_{1}(l)
$$

${ }^{\sigma}$ evaluate at any $D_{s 1}, D_{s 2} \Rightarrow$ get \mathcal{N}_{0} and \mathcal{N}_{1}, i.e., full \mathcal{N}

Choose $D_{s 1}, D_{s 2}$ integer \Rightarrow suitable for numerical implementation
$\left[D_{s}=4-2 \epsilon ' t\right.$-Hooft-Veltman scheme, $D_{s}=4$ FDH scheme $]$

In practice

- Start from
- Use unitarity constraints to determine the coefficients, computed as products of tree-level amplitudes with complex momenta in higher dimensions
- Berends-Giele recursion relations are natural candidates to compute tree level amplitudes: they are very fast for large N and very general (spin, masses, complex momenta)

Final result

$$
\begin{aligned}
& \mathcal{A}_{(D)}=\sum_{\left[i_{1} \mid i_{5}\right]} e_{i_{1} i_{2} i_{3} i_{4} i_{5}}^{(0)} I_{i_{1} i_{2} i_{3} i_{4} i_{5}}^{(D)} \\
& +\sum_{\left[i_{1} \mid i_{4}\right]}\left(d_{i_{1} i_{2} i_{3} i_{4}}^{(0)} I_{i_{1} i_{2} i_{3} i_{4}}^{(D)}-\frac{D-4}{2} d_{i_{1} i_{2} i_{3} i_{4}}^{(2)} I_{i_{1} i_{2} i_{3} i_{4}}^{(D+2)}+\frac{(D-4)(D-2)}{4} d_{i_{1} i_{2} i_{3} i_{4}}^{(4)} I_{i_{1} i_{2} i_{3} i_{4}}^{(D+4)}\right) \\
& +\sum_{\left[i_{1} \mid i_{3}\right]}\left(c_{i_{1} i_{2} i_{3}}^{(0)} I_{i_{1} i_{2} i_{3}}^{(D)}-\frac{D-4}{2} c_{i_{1} i_{2} i_{3}}^{(9)} I_{i_{1} i_{2} i_{3}}^{(D+2)}\right)+\sum_{\left[i_{1} \mid i_{2}\right]}\left(b_{i_{1} i_{2}}^{(0)} I_{i_{1} i_{2}}^{(D)}-\frac{D-4}{2} b_{i_{1} i_{2}}^{(9)} I_{i_{1} i_{2}}^{(D+2)}\right)
\end{aligned}
$$

Cut-constructable part:

$$
\mathcal{A}_{N}^{C C}=\sum_{\left[i_{1} \mid i_{4}\right]} d_{i_{1} i_{2} i_{3} i_{4}}^{(0)} I_{i_{1} i_{2} i_{3} i_{4}}^{(4-2 \epsilon)}+\sum_{\left[i_{1} \mid i_{3}\right]} c_{i_{1} i_{2} i_{3}}^{(0)} I_{i_{1} i_{2} i_{3}}^{(4-2 \epsilon)}+\sum_{\left[i_{1} \mid i_{2}\right]} b_{i_{1} i_{2}}^{(0)} I_{i_{1} i_{2}}^{(4-2 \epsilon)}
$$

Rational part:

$$
R_{N}=-\sum_{\left[i_{1} \mid i_{i}\right]} \frac{d_{i_{1}}^{(4)} \frac{i_{2} i_{i} i_{4}}{(4)}}{6}+\sum_{\left[i_{1} \mid i_{3}\right]} \frac{c_{i_{1} i_{2}}^{(9)}}{2}-\sum_{\left[i_{1} \mid i_{2}\right]}\left(\frac{\left(q_{i_{1}}-q_{i_{2}}\right)^{2}}{6}-\frac{m_{i_{1}}^{2}+m_{i_{2}}^{2}}{2}\right) b_{i_{1} i_{2}}^{(9)}
$$

Vanishing contributions: $\mathcal{A}=\mathcal{O}(\epsilon)$

The F90 Rocket program

Rocket science!

Eruca sativa =Rocket=roquette=arugula=rucola Recursive unitarity calculation of one-loop amplitudes

So far computed one-loop amplitudes:
\checkmark N-gluons
\checkmark qq $+N$-gluons
\checkmark qq $+W+N$-gluons
$\checkmark \mathrm{qq}+\mathrm{QQ}+\mathrm{W}$
$\checkmark \mathrm{tt}+\mathrm{N}$-gluons
$\checkmark \mathrm{tt}+\mathrm{qq}+\mathrm{N}$-gluons [Schulze]

Issues of automated one-loop

- checks of the results
- poles, ward identities, independence of choice of D_{1} and D_{2}, independence of the choice of the solution of the unitarity constraints, independence from choice of auxiliary vectors (gauge)
- numerical instabilities at special points
- efficient procedure for identification of special points, than run in quadruple precision
- numerical efficiency
- polynomial scaling for any NLO amplitude (N^{9} for gluons)
- practicality: computation of realistic LHC processes
- first application: W + 3 jets

First application: W + 3 jets

I. $W+3$ jets measured at the Tevaton, but LO varies by more than a factor 2 for reasonable changes in scales

	$W^{ \pm}, \mathrm{TeV}$	W^{+}, LHC	W^{-}, LHC
$\sigma[\mathrm{pb}], \mu=40 \mathrm{GeV}$	74.0 ± 0.2	783.1 ± 2.7	481.6 ± 1.4
$\sigma[\mathrm{pb}], \mu=80 \mathrm{GeV}$	45.5 ± 0.1	515.1 ± 1.1	316.7 ± 0.7
$\sigma[\mathrm{pb}], \mu=160 \mathrm{GeV}$	29.5 ± 0.1	353.5 ± 0.8	217.5 ± 0.5

First application: W + 3 jets

I. $W+3$ jets measured at the Tevaton, but LO varies by more than a factor 2 for reasonable changes in scales

	$W^{ \pm}, \mathrm{TeV}$	W^{+}, LHC	W^{-}, LHC
$\sigma[\mathrm{pb}], \mu=40 \mathrm{GeV}$	74.0 ± 0.2	783.1 ± 2.7	481.6 ± 1.4
$\sigma[\mathrm{pb}], \mu=80 \mathrm{GeV}$	45.5 ± 0.1	515.1 ± 1.1	316.7 ± 0.7
$\sigma[\mathrm{pb}], \mu=160 \mathrm{GeV}$	29.5 ± 0.1	353.5 ± 0.8	217.5 ± 0.5

II. Measurements at the Tevaton: for $W+n$ jets with $n=1,2$ data is described well by NLO QCD \Rightarrow verify this for 3 and more jets

First application: W + 3 jets

III.W + 3 jets of interest at the LHC, as one of the backgrounds to model-independent new physics searches using jets + MET

First application: W + 3 jets

III.W + 3 jets of interest at the LHC, as one of the backgrounds to model-independent new physics searches using jets + MET
IV. Calculation highly non-trivial optimal testing ground

$$
\begin{array}{ll}
0 \rightarrow \bar{u} d g g g W^{+} \\
0 \rightarrow \bar{u} d \bar{Q} Q g W^{+}
\end{array}
$$

Primitive amplitudes: color structures

Leading color

$\mathrm{LC} \equiv\left(N_{c}^{2}-1\right) N_{c}^{3}$

$\mathrm{LC} \cdot \frac{n_{f}}{N_{c}}$

Fermion loops

$\mathrm{LC} \cdot \frac{n_{f}}{N_{c}}$

...

Subleading color

...

...

Rules of the game

Procedure:

- order all SU(3) particles \& allow all orderings of colorless particles

Rules of the game

Procedure:

- order all SU(3) particles \& allow all orderings of colorless particles

Explicitly for $W+3$ jets:

Rules of the game

Procedure:

- order all SU(3) particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

Explicitly for $W+3$ jets:
(1) (2) (3) 48 5
$u_{1} g_{2} g_{3} g_{4} d_{5}+W$

Rules of the game

Procedure:

- order all $\operatorname{SU}(3)$ particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

Explicitly for $W+3$ jets:
(1) (2) (3) 45
$\mathrm{u}_{1} \mathrm{~g}_{2} g_{3} g_{4} \mathrm{~d}_{5}+\mathrm{W}$

Rules of the game

Procedure:

- order all $\operatorname{SU}(3)$ particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

Explicitly for $W+3$ jets:
(1) (2) (3) 45 5
$u_{1} g_{2} g_{3} g_{4} d_{5}+W$

Rules of the game

Procedure:

- order all SU(3) particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

Explicitly for $W+3$ jets:
(1) (2) (3) 485
$\mathrm{u}_{1} \mathrm{~g}_{2} g_{3} g_{4} \mathrm{~d}_{5}+\mathrm{W}$

Rules of the game

Procedure:

- order all SU(3) particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

Explicitly for $W+3$ jets:

Rules of the game

Procedure:

- order all $\operatorname{SU}(3)$ particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]

Explicitly for $W+3$ jets:
(1) (2) (3) 45 5
$u_{1} g_{2} g_{3} g_{4} d_{5}+W$

Rules of the game

Procedure:

- order all $\operatorname{SU}(3)$ particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N -point case: parent must be IPI Npoint

Explicitly for $W+3$ jets:
(1) (2) (3) 485
$\mathrm{u}_{1} \mathrm{q}_{2} \mathrm{~g}_{3} \mathrm{q}_{4} \mathrm{~d}_{5}+\mathrm{W}$

Rules of the game

Procedure:

- order all $\operatorname{SU}(3)$ particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N -point case: parent must be IPI Npoint

Explicitly for $W+3$ jets:
(1) (2) (3) 485
$\mathrm{u}_{1} \mathrm{q}_{2} \mathrm{~g}_{3} \mathrm{q}_{4} \mathrm{~d}_{5}+\mathrm{W}$

Rules of the game

Procedure:

- order all $\mathrm{SU}(3)$ particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N -point case: parent must be IPI Npoint, use dummy lines if needed

Explicitly for W+3jets:

(1) (2) 3 (4) 5
$\mathrm{u}_{1} \mathrm{q}_{2} \mathrm{~g}_{3} \mathrm{q}_{4} \mathrm{~d}_{5}+\mathrm{W}$

Refers e.g. to:

Rules of the game

Procedure:

- order all SU(3) particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint, use dummy lines if needed
- consider all cuts and throw away those involving dummy lines

Explicitly for $\mathrm{W}+3$ jets:

(1) (2) (3) 44 5
$\mathrm{u}_{1} \mathrm{q}_{2} \mathrm{~g}_{3} \mathrm{q}_{4} \mathrm{~d}_{5}+\mathrm{W}$

\checkmark accept

Rules of the game

Procedure:

- order all SU(3) particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N -point case: parent must be IPI Npoint, use dummy lines if needed
- consider all cuts and throw away those involving dummy lines

Explicitly for $\mathrm{W}+3$ jets:

(1) (2) (3) 44 5
$\mathrm{u}_{1} \mathrm{q}_{2} \mathrm{~g}_{3} \mathrm{q}_{4} \mathrm{~d}_{5}+\mathrm{W}$

X reject

Rules of the game

Procedure:

- order all SU(3) particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N-point case: parent must be IPI Npoint, use dummy lines if needed
- consider all cuts and throw away those involving dummy lines
- process each cut use standard Ddimensional unitarity

Explicitly for $W+3$ jets:
(1) (2) (3) 485
$\mathrm{u}_{1} \mathrm{q}_{2} \mathrm{~g}_{3} \mathrm{q}_{4} \mathrm{~d}_{5}+\mathrm{W}$

X reject

Rules of the game

Procedure:

- order all SU(3) particles \& allow all orderings of colorless particles
- draw the parent diagram so that the loop is in the fixed position compared to the external fermion line [L/R]
- N -point case: parent must be IPI Npoint, use dummy lines if needed
- consider all cuts and throw away those involving dummy lines
- process each cut use standard Ddimensional unitarity

Explicitly for $W+3$ jets:

X reject

- tree-level amplitudes are computed via color stripped Feynman rules

Sample results

Helicity	$1 / \epsilon^{2}$	$1 / \epsilon$	ϵ^{0}
$A^{\text {tree }}\left(1_{\bar{q}}^{+} 2_{q}^{-} 3_{g}^{+} 4_{g}^{+} 5_{g}^{+} 6_{\bar{l}}^{+} 7_{l}^{-}\right)$			$-0.006873+i 0.011728$
$r_{L}^{[1]}\left(1_{\bar{q}}^{+} 2_{q}^{-} 3_{g}^{+} 4_{g}^{+} 5_{g}^{+} 6_{\bar{l}}^{+} 7_{l}^{-}\right)$	-4.00000	$-10.439578-i 9.424778$	$5.993700-i 19.646278$
$A^{\text {tree }}\left(1_{\bar{q}}^{+} 2_{q}^{-} 3_{g}^{+} 4_{g}^{+} 5_{g}^{-} 6_{\bar{l}}^{+} 7_{l}^{-}\right)$			$0.010248-i 0.007726$
$r_{L}^{[1]}\left(1_{\bar{q}}^{+} 2_{q}^{-} 3_{g}^{+} 4_{g}^{+} 5_{g}^{-} 6_{\bar{l}}^{+} 7_{l}^{-}\right)$	-4.00000	$-10.439578-i 9.424778$	$-14.377555-i 37.219716$
$A^{\text {tree }}\left(1_{\bar{q}}^{+} 2_{q}^{-} 3_{g}^{-} 4_{g}^{+} 5_{g}^{+} 6_{\bar{l}}^{+} 7_{l}^{-}\right)$			$0.495774-i 1.274796$
$r_{L}^{[1]}\left(1_{\bar{q}}^{+} 2_{q}^{-} 3_{g}^{-} 4_{g}^{+} 5_{g}^{+} 6_{\bar{l}}^{+} 7_{l}^{-}\right)$	-4.00000	$-10.439578-i 9.424778$	$-1.039489-i 30.210418$
$A^{\text {tree }}\left(1_{\bar{q}}^{+} 2_{q}^{-} 3_{g}^{-} 4_{g}^{+} 5_{g}^{-} 6_{\bar{l}}^{+} 7_{l}^{-}\right)$			$-0.294256-i 0.223277$
$r_{L}^{[1]}\left(1_{\bar{q}}^{+} 2_{q}^{-} 3_{g}^{-} 4_{g}^{+} 5_{g}^{-} 6_{\bar{l}}^{+} 7_{l}^{-}\right)$	-4.00000	$-10.439578-i 9.424778$	$-1.444709-i 26.101951$

$$
r_{L}^{[j]}(1,2,3,4,5,6,7)=\frac{1}{c_{\Gamma}} \frac{A_{L}^{[j]}(1,2,3,4,5,6,7)}{A^{\text {tree }}(1,2,3,4,5,6,7)}, \quad c_{\Gamma}=\frac{\Gamma(1+\epsilon) \Gamma(1-\epsilon)^{2}}{(4 \pi)^{2-\epsilon} \Gamma(1-2 \epsilon)},
$$

Leading color amplitudes in 0808.094 I [Berger, Bern, Cordero, Dixon, Forde, Ita, Kosower, Maitre]

All amplitudes in 08 I 0.2542 [Ellis, Giele, Kunszt, Melnikov, GZ]

Time dependence of $q q+W+n$ gluons

$N_{\text {cuts }}$
$N_{\text {cuts }} \cdot(n-2)$

Time dependence of $q q+W+n$ gluons

\# of cuts: $\quad N_{\text {cuts }}$
$N_{\text {cuts }} \cdot(n-2)$
Similar plots for qq + n gluons

Finding instabilities

I. Correlation in the accuracy of single pole and constant part
\Rightarrow if the accuracy on the poles is worse than X use higher precision This does not check the rational part

Finding instabilities

I. Correlation in the accuracy of single pole and constant part
\Rightarrow if the accuracy on the poles is worse than X use higher precision This does not check the rational part

2. How good is the system of equations solved ?

Look at how well residues are reconstructed using the coefficients In practice: choose a random loop momentum and for a given cut

- compute the residue as linear combination of coefficients
- compute the residue directly
\Rightarrow if the results differ more than X use higher precision

Instabilities and accuracy

\Rightarrow All instabilities detected and cured with quadruple precision

Primitive amplitudes: color structures

Leading color

4-quark I-gluon

$\mathrm{LC} \cdot \frac{n_{f}}{N_{c}}$

Fermion loops

...

Subleading color

...

At tree level: leading color works up to $\mathrm{O}(10 \%)$, 4-quark processes $\mathrm{O}(30 \%)$

Scale variation: $\mathrm{W}^{+}+3$ jets

[Cuts and input defined in Ellis, Melnikov, GZ '09]

- very strong dependence at LO, remarkable independence at NLO
- $\mathrm{LO}=\mathrm{NLO}$ at scales $\sim 160 \mathrm{GeV}$
- $W+3$ jets similar to $W+2$ jets, however the price to pay for an infelicitous choice of scales is higher now
- similar results at the Tevatron

Second W + 3 jet calculation

More recently, similar calculation for W + 3 jets done in Blackhat+Sherpa C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita, D.A. Kosower, D. Maitre [0902.2760]

In the above paper: still leading color approximation in virtual (not real), all subprocesses included (but no fermion loops)

Next step: inclusion of all subprocesses and comparison with Berger et al.

CDF cuts

$$
\begin{gathered}
p_{\perp, j}>20 \mathrm{GeV} \quad p_{\perp, e}>20 \mathrm{GeV} \quad E_{\perp, \mathrm{miss}}>30 \mathrm{GeV} \\
\left|\eta_{e}\right|<1.1 \quad M_{\perp, W}>20 \mathrm{GeV} \\
\mu_{0}=\sqrt{p_{\perp, W}^{2}+M_{W}^{2}} \quad \mu=\mu_{R}=\mu_{F}=\left[\mu_{0} / 2,2 \mu_{0}\right]
\end{gathered}
$$

- CDF uses JETCLU with $R=0.4$, but this is not infrared safe, use SIScone with the same R
Difference $\mathrm{O}(\mathrm{I}-2 \%)$ in inclusive cross-section [more in distributions] SIScone \Rightarrow Salam \& Soyez '06
- CDF applies lepton-isolation cuts. This is a $\mathrm{O}(10 \%)$ effect. No lepton isolation in order to compare with Berger et al.
Lepton-isolation and detector acceptance cuts are believe to cancel out
- PDFs: cteq6II and cteq6m, all other input as in 0902.2760 NB: diagonal CKM O(I-2\%) effect relative to Cabibbo rotated one

Cross-section at the Tevatron

$$
\underbrace{\sigma_{W+3 j}\left(p_{\perp, j}>25 \mathrm{GeV}\right)=(0.84 \pm 0.24) \mathrm{pb}}
$$

Cross-section at the Tevatron

$$
\underbrace{\sigma_{W+3 j}\left(p_{\perp, j}>25 \mathrm{GeV}\right)=(0.84 \pm 0.24) \mathrm{pb}} \mathrm{CDF}
$$

LOLC					
$0.89_{-0.31}^{+0.55}$					

Cross-section at the Tevatron

$$
\underbrace{\sigma_{W+3 j}\left(p_{\perp, j}>25 \mathrm{GeV}\right)=(0.84 \pm 0.24) \mathrm{pb}}
$$

LOLC	LOFC				
$0.89_{-0.31}^{+0.55}$	$0.81_{-0.28}^{+0.50}$				

Cross-section at the Tevatron

$$
\underbrace{\sigma_{W+3 j}\left(p_{\perp, j}>25 \mathrm{GeV}\right)=(0.84 \pm 0.24) \mathrm{pb}} \mathrm{CDF}
$$

LOLC	LOFC	$r=\frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}^{\mathrm{LC}}}$			
$0.89_{-0.31}^{+0.55}$	$0.81_{-0.28}^{+0.50}$	0.91			

Cross-section at the Tevatron

$$
\underbrace{\sigma_{W+3 j}\left(p_{\perp, j}>25 \mathrm{GeV}\right)=(0.84 \pm 0.24) \mathrm{pb}} \mathrm{CDF}
$$

LOLC	LOFC	$r=\frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}^{\mathrm{LC}}}$	NLOLC		
$0.89_{-0.31}^{+0.55}$	$0.81_{-0.28}^{+0.50}$	0.91	$0.89_{-0.11}^{+0.03}$		

Cross-section at the Tevatron

$$
\underbrace{\sigma_{W+3 j}\left(p_{\perp, j}>25 \mathrm{GeV}\right)=(0.84 \pm 0.24) \mathrm{pb}} \mathrm{CDF}
$$

| LO LC | LO | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $0.89_{-0.31}^{+0.55}$ | $0.81_{-0.28}^{+0.50}$ | 0.91 | LO | |
| $\mathrm{NO}^{\mathrm{LC}}$ | NLO | NC | NLO | |
| $0.89_{-0.11}^{+0.03}$ | $0.81_{-0.10}^{+0.03}$ | | | |

'Our best shot'

Cross-section at the Tevatron

$$
\underbrace{\sigma_{W+3 j}\left(p_{\perp, j}>25 \mathrm{GeV}\right)=(0.84 \pm 0.24) \mathrm{pb}} \mathrm{CDF}
$$

LO LC	$\mathrm{LO} \mathrm{FC}^{\mathrm{FC}}$	$r=\frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}}$	NLC	LC	$r \cdot \mathrm{NLOLC}$
$0.89_{-0.31}^{+0.55}$	$0.81_{-0.28}^{+0.50}$	0.91	$0.89_{-0.11}^{+0.03}$	$0.81_{-0.10}^{+0.03}$	$0.908_{-0.142}^{+0.044}(v 3)$

'Our best shot'

Cross-section at the Tevatron

$$
\sigma_{W+3 j}\left(p_{\perp, j}>25 \mathrm{GeV}\right)=(0.84 \pm 0.24) \mathrm{pb}
$$

CDF

LOLC	LO	FC	$r=\frac{\mathrm{LO}^{\mathrm{FC}}}{\mathrm{LO}}$	NLO	LC
$\mathrm{LO} \cdot \mathrm{NLO} \mathrm{LC}$	Berger et al.				
$0.89_{-0.31}^{+0.55}$	$0.81_{-0.28}^{+0.50}$	0.91	$0.89_{-0.11}^{+0.03}$	$0.81_{-0.10}^{+0.03}$	$0.908_{-0.142}^{+0.044}(v 3)$

'Our best shot'
NB: errors are standard scale variation errors, statistical errors smaller

12\% discrepancy with Berger et al.
Disagreement?

Cross-section at the Tevatron

Differences with respect to Berger et al.

- Fermion loops
$\mathrm{O}(\mathrm{I} \%)$ for 2 q subprocesses, up to $\mathrm{O}(-15 \%)$ for 4 q ones [as in $\mathrm{W}+2 \mathrm{j}$] up to 5% in the right direction

Cross-section at the Tevatron

Differences with respect to Berger et al.

- Fermion loops
$\mathrm{O}(\mathrm{I} \%)$ for 2 q subprocesses, up to $\mathrm{O}(-15 \%)$ for 4 q ones [as in $\mathrm{W}+2 \mathrm{j}$]
- up to 5% in the right direction
- Leading color approximation - another 3% in the right direction

number of jets	CDF	LC NLO	NLO
1	53.5 ± 5.6	$58.3_{-4.6}^{+4.6}$	$57.8_{-4.0}^{+4.4}$
2	6.8 ± 1.1	$7.81_{-0.91}^{+0.54}$	$7.62_{-0.86}^{+0.62}$
3	0.84 ± 0.24	$0.908_{-0.142}^{+0.044}$	-

Cross-section at the Tevatron

Differences with respect to Berger et al.

- Fermion loops
$\mathrm{O}(\mathrm{I} \%)$ for 2 q subprocesses, up to $\mathrm{O}(-15 \%)$ for 4 q ones [as in $\mathrm{W}+2 \mathrm{j}$]
up to 5% in the right direction
- Leading color approximation - another 3% in the right direction

number of jets	CDF	LC NLO	NLO
1	53.5 ± 5.6	$58.3_{-4.6}^{+4.6}$	$57.8_{-4.0}^{+4.4}$
2	6.8 ± 1.1	$7.81_{-0.91}^{+0.54}$	$7.62_{-0.86}^{+0.62}$
3	0.84 ± 0.24	$0.908_{-0.142}^{+0.044}$	-

Remaining discrepancy acceptable, more detailed comparison not possible, however tension stronger with full NLO calculation presented yesterday: Leading color only 3% effect $\Rightarrow \sigma_{\text {NLO }}^{F C}=0.882_{-0.138}^{+0.057}$

Sample distribution: $\mathrm{pt}_{\mathrm{t}, \mathrm{j}}$

Berger et al '09

Ellis, Melnikov, GZ preliminary

LHC cuts

$$
\begin{aligned}
E_{\mathrm{CM}} & =10 \mathrm{TeV} \quad E_{\perp, \text { jet }}=30 \mathrm{GeV} \quad E_{\perp, e}=20 \mathrm{GeV} \\
E_{\perp, \text { miss }} & =15 \mathrm{GeV} \quad M_{\perp, W}=30 \mathrm{GeV} \quad\left|\eta_{e}\right|<2.4 \quad\left|\eta_{\text {jet }}\right|<3 \\
\mu_{0} & =\sqrt{p_{\perp, W}^{2}+M_{W}^{2}} \quad \mu=\mu_{R}=\mu_{F}=\left[\mu_{0} / 2,2 \mu_{0}\right]
\end{aligned}
$$

- Jet definition: SIScone with $\mathrm{R}=0.5$
- PDFs: cteq6II and cteq6m
- Other input parameters as before

LHC: $\mathrm{W}^{+}+3$ jet cross-section

	$\sigma(\mu / 2)[\mathrm{pb}]$	$\sigma(\mu)[\mathrm{pb}]$	$\sigma(2 \mu)[\mathrm{pb}]$
LO	59.1	40.1	28.1
NLO [excl]	23.1	28.7	28.9
K [excl]	0.39	0.72	1.03
NLO [incl]	36.1	36.5	33.9
K [incl]	0.61	0.91	1.21

Ellis, Melnikov, GZ preliminary

- scale dependence considerably reduced at NLO
- NLO tends to reduce cross-section
- because of very large scale dependence of LO, quoting a K-factor not very meaningful

LHC: $\mathrm{W}^{+}+3$ jet sample distribution

Ellis, Melnikov, GZ preliminary

$$
H_{T}=\sum_{j=1,2,3} p_{\perp, j}+p_{\perp, e}
$$

Final remarks

Generalized D-dimensional unitarity
X general Berends-Giele recursion for tree level amplitudes: numerically efficient (large N), general (D, spins, masses)
X simple method, suitable for automation
X universal method (general masses, spins) and unified approach, no 'special' cases, no exceptions
X speed: numerical performance as expected (polynomial)
X transparent: full control on all parts

Final remarks

Generalized D-dimensional unitarity

X general Berends-Giele recursion for tree level amplitudes: numerically efficient (large N), general (D, spins, masses)
X simple method, suitable for automation
X universal method (general masses, spins) and unified approach, no 'special' cases, no exceptions
X speed: numerical performance as expected (polynomial)
X transparent: full control on all parts

Maturity reached for cross-sections calculations?
Demonstrated by first explicit calculation of $\mathrm{W}+3$ jets (but still room for further improvements)

