NLO EW+QCD corrections to W+jet production at hadron colliders for decaying (off-shell) W bosons

> Stefan Dittmaier University of Freiburg

in collaboration with A. Denner, T. Kasprzik and A. Mück

Contents

- Introduction 1
- **Calculation of NLO corrections** 2
- Numerical results for the LHC 3
- Conclusions 4

1 Introduction

Importance of W+jet production: $pp \rightarrow l\nu_l + jet + X$

- large SM cross section (\sim 1nb after basic cuts) $\rightarrow\,$ standard candle
- single-W production often shows additional jet activity
 - \hookrightarrow relevance for W-mass determination at the LHC
- offers precision test for jet dynamics in QCD
- dominant channel for high- $p_{\rm T}$ leptons
 - \hookrightarrow important background for various new-physics searches

Theoretical status:

- NLO QCD DYRAD [Giele et al. '93]; MCFM [Campbell/R.K.Ellis '02]; Melnikov/Petriello '06; Catani et al. '09
- NLO EW for stable W bosons

Kühn, Kulesza, Pozzorini, Schulze '07; Hollik, Kasprzik, Kniehl '07

Motivation for this work:

Inclusion of full off-shell effects in NLO QCD+EW predictions

 \hookrightarrow e.g. essential for W-mass determination

- Calculation of NLO corrections 2
- Lowest-order prediction 2.1

LO diagrams:

Contributions from photon-induced processes

Features of the LO cross section:

- IR safety requires at least lower cut on $p_{T,jet}$
 - \hookrightarrow apply jet algorithm for NLO cross section before cut on $p_{\rm T,jet}$
- contributions from photon-induced processes generically small ($\sim 1\%$)
 - \hookrightarrow inclusion of LO and NLO QCD as corrections

2.2 Survey of NLO EW+QCD corrections and technical details

1PI loop insertions in virtual corrections: O(100) EW loop diagrams per channel

Self-energy insertions:

Vertex corrections:

Box corrections:

Pentagon graphs:

Most complicted parts of the loop calculation:

• pentagon graphs:

→ stable reduction to box integrals without inverse Gram determinants
 Denner, S.D. '02,'05 (similar to Binoth et al. '05)

• numerical instabilities in Passarino–Veltman reduction of tensor integrals

 \hookrightarrow expansion about exceptional points

Denner, S.D. '05 (similar to Giele et al. '04; R.K.Ellis et al. '05)

- gauge-invariant treatment of W resonances
 - \leftrightarrow "complex-mass scheme"

Denner, S.D., Roth, Wieders '05

The complex-mass scheme at NLO Denner, S.D., Roth, Wieders '05

Basic idea: mass² = location of propagator pole in complex p^2 plane

 \hookrightarrow consistent use of complex masses everywhere !

Application to gauge-boson resonances:

- replace $M_W^2 \rightarrow \mu_W^2 = M_W^2 iM_W\Gamma_W$, $M_Z^2 \rightarrow \mu_Z^2 = M_Z^2 iM_Z\Gamma_Z$ and define (complex) weak mixing angle via $c_W^2 = 1 - s_W^2 = \frac{\mu_W^2}{\mu_Z^2}$
- virtues:
 - ◊ gauge-invariant result (Slavnov–Taylor identities, gauge-parameter independence)
 - \hookrightarrow unitarity cancellations respected !
 - perturbative calculations as usual (loops and counterterms)
 - on double counting of contributions (bare Lagrangian unchanged !)
- drawbacks:
 - ♦ unitarity-violating spurious terms of $\mathcal{O}(\alpha^2) \rightarrow$ but beyond NLO accuracy ! (from *t*-channel/off-shell propagators and complex mixing angle)
 - complex gauge-boson masses also in loop integrals

Real emission corrections

- NLO QCD:
 - ♦ gluon bremsstrahlung: $u\bar{d} \rightarrow l^+ \nu_l gg$, $ug \rightarrow l^+ \nu_l dg$, $\bar{d}g \rightarrow l^+ \nu_l \bar{u}g$
 - ♦ gg fusion: gg $\rightarrow l^+ \nu_l \bar{u} d$
 - ♦ gluon splitting $g^* \to q\bar{q}$: $u\bar{d} \to l^+ \nu_l q\bar{q} + crossed$ variants
- NLO EW:
 - ♦ photon bremsstrahlung: $u\bar{d} \rightarrow l^+ \nu_l g \gamma$, $ug \rightarrow l^+ \nu_l d \gamma$, $\bar{d}g \rightarrow l^+ \nu_l \bar{u} \gamma$

Note: $u\bar{d} \rightarrow l^+ \nu_l g \gamma$ contributes to both - NLO EW corrections to $u\bar{d} \rightarrow l^+ \nu_l g$ and - NLO QCD corrections to $u\bar{d} \rightarrow l^+ \nu_l \gamma$

Further technical details

- Generic features
 - two completely independent calculations of all ingredients
 - \hookrightarrow results in mutual agreement
 - dipole subtraction for QCD and photonic IR (soft and collinear) singularities
 Catani, Seymour '96; S.D. '99; S.D., Kabelschacht, Kasprzik '08
 - \hookrightarrow checked against phase-space slicing
- MPI/FR
 - Ioop amplitude generation with FEYNARTS 1 Böhm, Denner, Küblbeck '90
 - \hookrightarrow algebraic reduction with inhouse MATHEMATICA routines
 - tree amplitudes evaluated analytically via spinor formalism
 - ♦ phase-space integration via VEGAS
- PSI
 - ♦ loop amplitude generation with FeynArts 3 Hahn '00
 - ↔ algebraic reduction with FORMCALC Hahn '98–'09 and POLE Meier '05; Mück
 - real corrections generated with program POLE
 - $\hookrightarrow \ \text{automatic generation of tree amplitudes via spinor formalism,} \\ \text{dipole subtraction terms, and multi-channel phase-space integration}$

Non-trivial interferences between real NLO QCD and EW corrections

 \rightarrow interference non zero

 \hookrightarrow Non-singular contributions of $\mathcal{O}(\alpha^3 \alpha_s) =$ same order as NLO EW

Interferences included in our calculation

 \hookrightarrow effect phenomenologically negligible (%-effects only for $p_{T,jet} \gtrsim 1 \text{ TeV}$, otherwise $\ll 1\%$)

Numerical results for the LHC 3

Setup and definition of observables

- PDF set MRST2004QED which includes NLO QCD+EW corrections
 - \hookrightarrow initial-state collinear QCD and photonic singularities removed via factorization
 - \hookrightarrow PDF set includes photon density
- two scale choices: $\mu = \mu_{ren} = \mu_{fact} = M_W$ (fixed) or $\mu = \sqrt{M_{\rm W}^2 + (p_{\rm T}^{\rm had})^2}$ (variable)
- k_T-algorithm for jet definition
- basic cuts: $p_{\text{T, jet1/l/miss}} > 25 \,\text{GeV}$, $|y_{\text{jet1/l}}| < 2.5$, $R_{\text{l,jet}} > 0.5$
- jet veto optionally applied to 2nd hard jet if $p_{T, jet2} > p_{T, jet1}/2$
- two lepton identifications: "bare leptons" ($l = \mu^+$)

 \hookrightarrow large corrections $\propto \alpha \ln(m_l^2/Q^2)$

or photon–lepton recombination if $R_{\gamma,l} < 0.1$ $(l = e^+)$ \hookrightarrow cancellation of all $\alpha \ln(m_l^2/Q^2)$ terms a la KLN

 photon fragmentation function for photon-jet separation Glover, Morgan '94

Photon–jet separation via photon fragmentation function $D_{q \rightarrow \gamma}$ Why?

- collinear quarks and photons have to be recombined \rightarrow quasiparticle otherwise corrections $\propto \ln(m_q^2/Q^2) \rightarrow$ perturbative "IR instability"
- quark and gluon jets cannot be distinguished event by event
 - \hookrightarrow common recombination required for quarks/gluons with photons

$$\Rightarrow \underbrace{(g_{hard} + \gamma_{soft})}_{EW \text{ corr. to W+jet}} \text{ and } \underbrace{(g_{soft} + \gamma_{hard})}_{QCD \text{ corr. to W+}\gamma} \text{ both appear as 1 jet}$$

Solution:

- exclude events with photon energy fraction $z_{\gamma} = \frac{E_{\gamma}}{E_{jet} + E_{\gamma}} > z_0$ for (jet + γ) quasiparticles (chosen value $z_0 = 0.7$)
- subtract convolution of LO cross section with

$$\begin{split} D_{q \to \gamma}^{\overline{\text{MS}}}(z_{\gamma}, \mu_{\text{fact}}) \Big|_{\text{mass.reg.}} &= \frac{\alpha Q_q^2}{2\pi} P_{q \to \gamma}(z_{\gamma}) \left[\ln \frac{m_q^2}{\mu_{\text{fact}}^2} + 2\ln z_{\gamma} + 1 \right] \; \leftarrow \text{cancels coll. singularities} \\ &+ \; D_{q \to \gamma}^{\text{ALEPH}}(z_{\gamma}, \mu_{\text{fact}}) \quad \leftarrow \text{non-perturbative part fitted to ALEPH data} \\ &\text{where} \quad P_{q \to \gamma}(z_{\gamma}) = \frac{1 + (1 - z_{\gamma})^2}{z_{\gamma}} = \text{ quark-to-photon splitting function} \end{split}$$

Transverse-momentum distribution of the hardest jet

 $d\sigma/dp_{\rm T,jet}[{\rm pb}/{\rm GeV}]$

QCD corrections:

EW corrections:

Large neg. corrections due to EW Sudakov logs → qualitative agreement with previous results for on-shell Ws Kühn et al. '07

Hollik et al. '07

Integrated cross section for various cuts on $p_{\mathrm{T,\,jet}}$

$pp \to l^+ \nu_l \text{ jet} + X \text{ at } \sqrt{s} = 14 \text{ TeV}$							
$p_{\mathrm{T,jet}}/\mathrm{GeV}$	$25-\infty$	$50 - \infty$	$100 - \infty$	$200 - \infty$	$500 - \infty$	$1000 - \infty$	
$\sigma_{\rm Born}^{\mu=M_{\rm W}}/{\rm pb}$	509.45(5)	182.74(2)	49.777(5)	8.1086(9)	0.3156(1)	0.0117(1)	
$\sigma^{ m var}_{ m Born}/{ m pb}$	502.66(5)	176.39(1)	45.382(4)	6.4990(6)	0.1850(1)	0.0048(1)	
$\delta^{\mu^+ u_\mu,\mathrm{var}}_\mathrm{EW}/\%$	-3.07(6)	-3.35(1)	-4.64(1)	-8.50(1)	-18.0(1)	-28.0(1)	EW Sudakov
$\delta^{ m rec,var}_{ m EW}/\%$	-2.07(1)	-2.55(2)	-4.18(1)	-8.37(3)	-17.8(1)	-27.9(1)	logs
$\delta^{\mu=M_{ m W}}_{ m QCD}/\%$	48.0(1)	64.8(1)	80.7(1)	115	188	270(1)	
$\delta^{ m var}_{ m QCD}/\%$	47.9(2)	65.4(1)	85.8(1)	135	270	494(1)	
$\delta^{\mu=M_{ m W}}_{ m QCD,veto}/\%$	21.5(1)	18.2(1)	22.5(2)	24.6(1)	5.3(1)	-26.4(2)	jet veto
$\delta^{ m var}_{ m QCD,veto}/\%$	22.3(1)	20.8(1)	29.8(2)	43.3(2)	52.4(1)	58.7(1)	
$\delta^{ m var}_{\gamma, m NLO}/\%$	0.38	0.70	1.18	1.86	3.26	5.18(1)	γ -induced
$\delta^{ m var}_{\gamma, m NLO, m veto}/\%$	0.35	0.64	1.10	1.76	3.03	4.73(1)	processes
$\delta^{ m var}_{ m IF}/\%$	0.05	0.13	0.51	1.88	11.50	49.95	QCD-EW
$\delta^{ m var}_{ m IF,veto}/\%$	0.01(1)	0.03	0.12	0.40	1.63	4.72	interferences

Transverse-momentum distribution of the charged lepton QCD corrections:

 ${\rm d}\sigma/{\rm d}p_{{\rm T},l}[{\rm pb}/{\rm GeV}]$

- large corrections distorting the shape
- corrections reduced by jet veto

EW corrections:

 ${\rm d}\sigma/{\rm d}p_{{\rm T},l} [{\rm pb}/{\rm GeV}]$

- moderate corrections of $\mathcal{O}(5\%)$
- Jacobian peaks slightly distorted

Transverse-mass distribution of the W boson

QCD corrections:

 ${\rm d}\sigma/{\rm d}M_{{\rm T},\nu_l l} [{\rm pb}/{\rm GeV}]$

- corrections smooth near Jacobian peak
- corrections reduced by jet veto

EW corrections:

 ${\rm d}\sigma/{\rm d}M_{{\rm T},\nu_l l}[{\rm pb}/{\rm GeV}]$

- corrections of $\mathcal{O}(5-10\%)$
- Jacobian peak significantly distorted

Comparison of EW corrections to W+jet and single (jet-inclusive) W production

 \hookrightarrow interesting for W-mass determination via single-W production

Comparison of EW corrections to W+jet and single (jet-inclusive) W production

 \hookrightarrow interesting for W-mass determination via single-W production

Distribution in the lepton–neutrino (p_T) azimuthal angle in the transverse plane QCD corrections:

 $d\sigma/d\phi_{l\nu_l}[pb]$

- significant distortion of shape
- corrections reduced by jet veto

EW corrections:

Physikalisches Institut

 $\mathrm{d}\sigma/\mathrm{d}\phi_{l\nu_l}[\mathrm{pb}]$

4 Conclusions

W+jet production is a very important process at Tevatron and LHC. (standard candle, W mass, background, etc.)

Our calculation provides

- recalculation of NLO QCD corrections
- first calculation of NLO EW corrections including full off-shell effects (e.g. relevant for W-mass determination)
 - \hookrightarrow building block for NNLO corrections of $\mathcal{O}(\alpha \alpha_{\rm s})$ for single-W production

Size of corrections:

- EW corrections particularly large at high $p_{\rm T}$ of leptons and jets
- photon-induced processes and EW–QCD interferences phenomenologically unimportant

Outlook:

- low- $p_{\rm T}$ range should be further improved by soft-gluon resummation or by merging with parton showers
- off-shell Z+jet production straightforward with the same approach

