$W\gamma\gamma$ at NLO QCD

Marcus Weber

MPI Munich

in collaboration with

Uli Baur, Doreen Wackeroth

Marcus Weber $W\gamma\gamma$ at NLO QCD

Marcus Weber $W\gamma\gamma$ at NLO QCD

Anomalous couplings in $W\gamma\gamma$

process contains $W\gamma\gamma$ and $WW\gamma\gamma$ vertices.

CP conserving couplings, em gauge invariance [Gaemers,

[Gaemers, Gounaris; Hagiwara et al.]

$$\mathcal{L}_{\mathsf{eff}} = -i \mathbf{e} \left[\kappa_{\gamma} \mathbf{W}_{\mu}^{\dagger} \mathbf{W}_{\nu} \mathbf{F}^{\mu\nu} + \frac{\lambda_{\gamma}}{M_{W}^{2}} \mathbf{G}_{\lambda\mu}^{\dagger} \mathbf{G}_{\nu}^{\mu} \mathbf{F}^{\nu\lambda} \right]$$

 $G_{\mu\nu} = W_{\mu\nu} - ie(A_{\mu}W_{\nu} - A_{\nu}W_{\mu})$ 2 parameters: κ_{γ} (=1 in SM) and λ_{γ} (=0 in SM)

	LEP 2	error from σ at LHC (100 fb ⁻¹)
$\Delta \kappa_{\gamma}$	0.026 ± 0.04	0.2
λ_γ	-0.028 ± 0.02	0.007

Marcus Weber $W\gamma\gamma$ at NLO QCD

related to photon radiation from charged particles

first: dips in distributions in $W\gamma$ production[Brown, Sahdev, Mikaelian, '79]dips are exact amplitude zero[Mikaelian, Samuel, Sahdev '79]

theorem [Brodsky, Brown, Kowalsky, '82] consider: n external charged particles (p_i, Q_i) and 1 photon (q):

if all
$$rac{\mathsf{Q}_{j}}{p_{i}\cdot q}$$
 the same $\Rightarrow M_{\mathsf{tree}} = 0$

even with > 1 photons if all collinear

smeared by: PDF's, finite widths, photon emission from decay leptons, qcd corrections

 $\rightarrow \text{dip}$

Radiation zero: example $W\gamma$

consider
$$p\bar{p} \rightarrow W^* \gamma \rightarrow \nu I \gamma$$

radiation zero at $\cos \theta_W^* = \frac{Q_u - Q_{\bar{d}}}{Q_u + Q_{\bar{d}}} = -1/3$

 $\theta_W^* = \angle(W, u)$ in partonic cms frame

partonic cms tricky to reconstruct

lepton preferentially emitted in W direction

look instead at rapidity difference

 $\Delta \eta(\gamma, I) = \eta(\gamma) - \eta(I)$

amplitude zero: only for collinear photons

want 2 photons: separation cut, photons not collinear but: still large dip if photons in same hemisphere

look at $\Delta \eta(\gamma \gamma, I) = \eta(\gamma \gamma) - \eta(I)$ photons in

- same hemishpere: dip
- opposite hemishpere: no dip

is dip filled up by QCD corrections?

 $W^-\gamma\gamma$ at Tevatron

[Baur et al, '97]

 $pp \rightarrow W\gamma\gamma$ tests Standard Model

- sensitive to anomalous couplings
- amplitude has radiation zero

in general at LHC: large QCD corrections. similar processes (*VVV* and $W\gamma$): large QCD corrections

 \Rightarrow need NLO QCD for $pp \rightarrow W\gamma\gamma$

$W\gamma\gamma$ leading order

direct contribution

$$d\sigma^D = \int dx_1 \, dx_2 \, f(x_1, \mu_f) f(x_2, \mu_f) d\hat{\sigma}_{W\gamma\gamma}$$

fragmentation contribution

$$d\sigma^F = \int dx_1 \, dx_2 \, f(x_1, \mu_f) f(x_2, \mu_f) \int dz \, D_{\gamma/q}(z, \mu_{
m frag}) d\hat{\sigma}_{W\gamma q}$$

- $W\gamma q$ production followed by collinear $q \rightarrow \gamma$ fragmentation
- fragmentation function $D_{\gamma/q}(z)$ formally $\mathcal{O}(\frac{\alpha}{\alpha_s})$ \Rightarrow same order as direct process

fragmentation contribution

- collinear hadronic remnant in final state
- suppression by photon isolation cut

$$E_{T,had} < \epsilon E_{T,\gamma}$$
 inside cone $\Delta R(\gamma, had) < R_{cone}$
 $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$

$$\sigma(pp \rightarrow W^+ \gamma \gamma)$$
 in fb, $\sqrt{s} = 14 \,\text{TeV}$ $\epsilon = 0.15$ $R_{\text{cone}} = 0.7$

	no isolation	with isolation		
LO direct	7.253(5)	7.253(5)		
LO frag	24.30(2)	1.505(1)		
\rightarrow effective suppression				

contributions

- o direct: NLO
- fragmentation: suppressed by photon isolation. only at LO

ingredients:

- virtual $u\bar{d} \rightarrow W\gamma\gamma$ amplitude
- real amplitudes $u\bar{d} \rightarrow W\gamma\gamma g, ug \rightarrow W\gamma\gamma d, \bar{d}g \rightarrow W\gamma\gamma \bar{u}$

Evaluation of 1-loop integrals

general 1-loop integral

$$T^n_{\{0,\mu,\mu
u\}} = rac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D k rac{\{1,k_\mu,k_\mu k_
u\}}{D_0\cdot\ldots\cdot D_{n-1}}$$

with denominator $D_i = (q + p_i)^2 - m_i^2$ decomposition

$$T^{\mu} = \sum_{i} p^{\mu}_{i} T_{i}$$
 $T^{\mu
u} = g^{\mu
u} T_{00} + \sum_{i,j} p^{\mu}_{i} p^{
u}_{j} T_{ij}$

Passarino-Veltman reduction of tensor loop integrals

- express tensor coefficients T_i , T_{ij} by scalar integrals
- kinematical determinants (Gram determinants) in denominator
- Gram determinants may vanish but: tensor integrals regular
 - \rightarrow cancellations in numerator
 - \rightarrow numerical instabilities

possible solutions

- avoid Gram determinants: modified/different reduction different basis integrals
 [Denner, Dittmaier], [Binoth et al]
- numerical integration

[Feroglia et al], [Kurihara et al], [de Doncker et al], [Nagy, Soper]

we use

- 5-point reduction: [Denner, Dittmaier '05] uses 4-dimensionality of spacetime → no inverse Gram determinants
- 3/4-point reduction Passarino-Veltman
- higher precision
 QD library by D. Baily: quadruple/octuple precision
 quadruple precision: slowdown factor 10-20
 - \rightarrow too slow to use everywhere
 - \Rightarrow high precision only for unstable points

runtime impact of higher precision

- fraction of quadruple precision points
 - 3-point $3 \cdot 10^{-5}$
 - 4-point 0.001
 - 5-point 0.03
- runtime dominated by real corrections

 \Rightarrow high precision evaluations have almost no impact on overall runtime

real amplitudes

 $ug \rightarrow W\gamma\gamma d$ and $\bar{d}g \rightarrow W\gamma\gamma \bar{u}$ amplitudes

- contain QED singularity if *q* and photon collinear can't be completely removed by cuts
 → need to include fragmentation contribution
- fragmentation contribution generates counterterm

 $D_{\gamma/q}(z) = D_{\gamma/q}(z, M_f^2) + \frac{1}{\epsilon} \frac{\alpha_s}{2\pi} \frac{\Gamma(1-\epsilon)}{\Gamma(1-2\epsilon)} \left(\frac{4\pi\mu_f^2}{M_f^2}\right)^{\epsilon} \int_z^1 \frac{dy}{y} D_{\gamma,c}(z/y) P_{cq}(y)$ analogous to PDF counterterm

 \Rightarrow singularity absorbed into fragmentation function

- 2 cutoff phase space slicing
- \Rightarrow agree well

All results preliminary !

cuts

standard

$$p_{T,\gamma} > 30\,{
m GeV} \qquad \eta_\gamma < 2.5$$

$$\Delta R_{\gamma\gamma} > 0.4$$
 $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$

optional photon isolation

 $E_{T,had} < \epsilon E_{T,\gamma}$ inside cone $\Delta R(\gamma, had) < R_{cone}$

$$\epsilon = 0.15$$
 $R_{cone} = 0.7$

optional jet veto

veto if
$$p_{T_i} > 50 \,\text{GeV}$$
 and $|\eta_i| < 3$

parton densities: LO (NLO): CTEQ6LL (CTEQ6M) fragmentation functions: leading log approximation (Duke, Owens)

$$\sigma(pp \rightarrow W^+ \gamma \gamma)$$
 in fb, $\sqrt{s} = 14 \,\text{TeV}$

	no isolation	with isolation	iso & jet veto
LO direct	7.253(5)	7.253(5)	7.253(5)
LO frag	24.30(2)	1.505(1)	1.501(1)
LO total	31.55	8.758	8.754
NLO	39.33(6)	25.62(4)	11.83(4)
K factor	1.25	2.93	1.35

no isolation: fragmentation contribution dominant with isolation: huge NLO corrections, mostly from hard jet radiation jet veto: corrections moderate (35 %)

Scale dependence

with isolation cuts

total scale dependence increased

NLO scale dependence from renormalization scale

NLO factorization scale dependence stabilized

Distributions and jet veto

with isolation cuts

jet veto if $p_{Tj} > 50 \, {
m GeV}$ and $|\eta_j| < 3$

 \rightarrow removes tails in p_T and $M_{\gamma\gamma}$.

Radiation zero

radiation zero for collinear photons

 \rightarrow difference between $\cos \theta_{\gamma\gamma} > 0$ and $\cos \theta_{\gamma\gamma} < 0$

only moderate effect at LO NLO corrections fill in dips

 $W\gamma\gamma$ production at LHC interesting test of Standard Model \rightarrow anomalous couplings, radiation zero

calculation of QCD NLO corrections

- corrections large, dominated by hard radiation
- total scale dependence increased. factorization scale dependence decreased.

outlook

- anomalous couplings
- W decays