Weak effects in *b*-jet and di-jet production at Hadron Colliders

Andreas Scharf

SUNY at Buffalo

LoopFest VIII, University of Wisconsin at Madison

In collaboration with Johann H. Kühn and Peter Uwer

LoopFest VIII, University of Wisconsin at Madison, May 2009 - p.1

Outline

- Motivation & Leading order processes
- Next-to-leading order corrections $O(\alpha_s^2 \alpha)$
- Results & Conclusion

Why weak effects in hadronic collisions ?

- Hadron Colliders
 - Provide high energy events
 - Many observables will be measured with 5-20% accuracy

Theory: NLO corrections

- QCD-corrections are important
- (Electro-) Weak corrections
 - Smaller coupling: $\alpha < \alpha_s$
 - Large logarithms: Sudakov Logarithms

$$\ln^2\left(\frac{E_{cm}}{M_w}\right), \ \ln\left(\frac{E_{cm}}{M_w}\right)$$

(Sudakov 1954) (Kühn, Penin, Smirnov 1999) (Ciafaloni, Comelli 1999) (Denner,Pozzorini 2001) **Bottom jet production**

- **•** Bottom-quark ($m_b = 0$)
 - Events with well separated partons ($p_T > 50 \text{ GeV}$)
 - Background process ($t\bar{t}$, SUSY)
 - \checkmark Testing the SM at high p_T
- *b*-jet production at Hadron Colliders

Bottom jet production

QCD, Mixed and Electroweak contributions

initial state	single <i>b</i> -tag		
quark-induced	$qb ightarrow qb, qar{b} ightarrow qar{b}, ar{q}b ightarrow ar{q}b, ar{q}ar{b} ightarrow ar{q}ar{b}$	$qar{q} o bar{b}$	
gluon-induced	$gb ightarrow gb$, $gar{b} ightarrow gar{b}$	$gg ightarrow bar{b}$	
pure bottom-induced	$bar{b} o bar{b}, bb o bb, ar{b}ar{b} o ar{b}ar{b}$		
	double <i>b</i> -tag		

- Experimentally
 - Lifetime of *B* mesons $\propto 1.5 \times 10^{-12} s$
 - Decay length allows b-jet identification

Bottom jet production

p_T-distribution at leading order

Single b-tag

Di-jet production

- Gluon- & light quark-jets ($m_u = m_d = m_s = m_c = 0$)
 - \checkmark Well separated jets $p_T > 50 \; \text{GeV}$
 - Indirect new physics search, e.g. Z'
- Experimentally
 - Tevatron: Di-jet-Masses up to 1 TeV
 - ●LHC: Di-jet-Masses up to several TeV

Di-jet production

Partonic processes

0 010000000		usu	ά
Processes with external Gluons			
$gg ightarrow gg$, $gg ightarrow qar{q}$, $gq ightarrow gq$, $gar{q} ightarrow gar{q}$, $qar{q} ightarrow gg$	\checkmark	_	
Processes with external Quarks only			
$qar{q} o q'ar{q}'$, $qar{q}' o qar{q}'$, $qq' o qq'$, $ar{q}'ar{q} o ar{q}'ar{q}$		\checkmark	\checkmark
$qar{q} ightarrow qar{q}$, $qq ightarrow qq$, $ar{q}ar{q} ightarrow ar{q}ar{q}$		\checkmark	\checkmark

~2

 α^2

~

p_T-distribution at leading order

A. Scharf, SUNY at Buffalo

Parton luminosity at the LHC

Leading order PDF's:

Define luminosity function:

Status of NLO calculations

b-jet production

• QCD corrections $O(\alpha_s^3)$

•
$$b\bar{b}$$
 production $O(\alpha_s^2 \alpha)$

- Di-jet production
 - QCD corrections $O(\alpha_s^3)$
 - Weak corrections $O(\alpha_s^2 \alpha)$

(Dawson, Ellis, Nason 1988) (Beenakker, Kuijf, Neerven, Smith 1989) (Frixione, Mangano 1997)

(Moretti et al 2003)

(Ellis, Sexton 1985) (Aversa et al 1988, 1991)

(Moretti et al 2006)

General Remarks about NLO

- Consider only weak corrections → neglecting photonic contributions
 - Gauge invariant subset
 - Photonic contributions involve no Sudakov Logarithms
- *b*-jet production
 - $O(\alpha)$ corrections to LO α_s^2 processes: Z, W, ϕ
- Di-jet production
 - $O(\alpha)$ corrections to LO α_s^2 processes: Z, W
 - $O(\alpha_s)$ corrections to LO $\alpha_s \alpha$ processes

Methods: Overview

b-jet production

- Substitution of the IR and UV poles, ...
- Crossing symmetries
- Some and Dipole-Method \checkmark
- Di-jet production
 - Subscription of the IR and UV poles, ...
 - Crossing symmetries
 - Comparison between Slicing- and Dipole-Method (\checkmark)

Comparison between Slicing- and Dipole-Method: b-jet production

Analytic Result: Example

Real corrections for $q\bar{q} \rightarrow bbg$ () × () $\frac{1}{4} \frac{1}{N^2} \sum_{\text{Spin Colour}} \sum_{\alpha,\beta} \left| M^{q\bar{q} \to b\bar{b}g} \right|^2 = \alpha_s^2 \alpha (4\pi)^3 \frac{N^2 - 1}{N^2}$ $\times \left(g_{\nu}^{q}g_{\nu}^{b}(t_{1}^{2}+t_{2}^{2}+u_{1}^{2}+u_{2}^{2})-g_{a}^{q}g_{a}^{b}(t_{1}^{2}+t_{2}^{2}-u_{1}^{2}-u_{2}^{2})\right)$ $\times \frac{1}{s} \frac{1}{s - m_Z^2} \frac{1}{s + t_1 + t_2 + u_1 + u_2} \frac{1}{s + t_1 + t_2 + u_1 + u_2 + m_Z^2}$ $\times \frac{1}{s+t_1+u_1} \frac{1}{s+t_2+u_1} \frac{1}{s+t_1+u_2} \frac{1}{s+t_2+u_2}$ $\times (2s^2 + (t_1 + t_2 + u_1 + u_2)(2s - m_Z^2))$ × $((t_1+t_2-u_1-u_2)s^2+((t_1+t_2)^2-(u_1+u_2)^2)s$ + $(t_1+t_2+u_1+u_2)(t_1t_2-u_1u_2)$

Partonic Results

Consider relative corrections to $gg \rightarrow b\bar{b}$ and $q\bar{q} \rightarrow b\bar{b}$

b-jet production at the LHC

Relative corrections to p_T : double b tag

b-jet production at the LHC

Relative corrections to p_T: double b tag

Comparison between massive and massless calculation

(Kühn, A.S., Uwer 2006)

b-jet production at the LHC

Relative corrections to p_T: single b tag

b-jet production at the Tevatron

Relative corrections to p_T

Di-jet production at the LHC

Preliminary Result

Weak corrections have impact to p_T-distribution

- *b*-jet production: $\propto 10 15\%$
- di-jet production (preliminary): $\propto 8 12\%$
- Analytic results for further studies